• Title/Summary/Keyword: Commercial soil classification

Search Result 7, Processing Time 0.022 seconds

A model study for the rational classification of mixed soil layer (혼합된 토층의 합리적 분류를 위한 모델 연구)

  • Kim, Byongkuk;Jang, Seungjin;Son, Inhwan;Kim, Joonseok
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.194-202
    • /
    • 2018
  • Purpose: It is necessary to set up a standardized method for classifying mixed soil layer that contains sand, gravel and boulder for engineering purposes. Method: Different size of soils was classified mixed soil layer by suggests unified soil classification method. Results: This paper suggests unified soil classification model for different size of soils where many authorities have their own system. Conclusion: Soil stratum classification method using appearing frequencies of gravels and weight ratio of boulders could be used to judgement in many cases.

South Dakota Soils: Their Genesis, Classification, and Management (South Dakota 토양의 발생, 분류 및 관리)

  • Malo, Douglas D.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.413-433
    • /
    • 2010
  • South Dakota is an important agricultural state in the United States with annual cash receipts from agricultural products exceeding $9 billion dollars. This production is possible because of large areas of productive soils. This publication describes the general characteristics and qualities of the major soil groups recognized in South Dakota. The soil forming factors are briefly described, soil classification is introduced, and the genesis of typical Udalf and Ustoll soils are discussed. Soil management issues impacting the use of SD soils are considered. Long-term (>70 yrs) cultivation has significantly reduced surface soil organic carbon levels (>30% reduction) when compared to non-cultivated soil. Soil test phosphorus levels significantly increased in cultivated fields due to commercial P fertilization. The major long-term production problems for SD soils are conservation of soil moisture, organic matter and nitrogen losses, fertility management, and wind and water erosion control.

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

Numerical Study on Flow Characteristics and Classification Performance of Circulating Air Classifier (수치해석을 이용한 순환형공기분급기 유동특성 및 분급성능 연구)

  • Yoon, Jong-Hwan;Cheong, Jun-Gyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.211-219
    • /
    • 2017
  • In this study, we performed numerical simulations on a circulating air classifier using a commercial computational fluid dynamics program. The variations in the grade efficiency, the cut-size and the cut-sharpness were calculated and discussed. By controlling the rotating speed of the main fan, the cut-size could be rapidly increased. However the linearity of the cut-size variation with respect to the main fan speed was not sufficient for application to contaminated soil classification processes. On the other hand, by varying the rotating speed of the classifying fan, the cut-size gradually decreased and could be precisely adjusted. Using both the main fan and the classifying fan, we could achieve larger cut-sharpness values and better classifying performances.

Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

  • Kim, Ji-Su;Kang, Nam Jun;Kwak, Youn-Sig;Lee, Choungkeun
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.140-147
    • /
    • 2017
  • Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-${\alpha}$, and ${\beta}$-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the ${\beta}$-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region.

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Vegetation Structure of Lower Stratum and Pinus densiflora Natural Regeneration Features from Micro-topography Classification in Pinus densiflora Forest of Anmyeon-do Island (안면도 소나무림 내 미세지형구분을 통한 하층식생구조와 소나무 천연갱신 양상)

  • Byeon, Seong Yeob;Kim, Hyun Seop;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.189-199
    • /
    • 2019
  • The forest management paradigm has recently shifted from focusing on commercial production to focusing on ecosystem management. Accordingly, a natural seedling regeneration method that has a naturally high affinity has attracted much attention in recent years. The aim of this study was to determine the relationship among various environmental factors, lower stratum vegetation, and seedling regeneration in Pinus densiflora forests. The survey site comprised 50 sectors divided using the line transect method, and the survey data were divided into those from wet habitat (19 sites) and dry habitat (31 sites), depending on the soil humidity, and were analyzed separately to show the close relationship between soil humidity and natural seedling regeneration. As a result, the dry habitat exhibited high seedling density (157,419 trees/ha), with the main species being Quercus serrata, Zanthoxylum piperitum, Smilax china, and Pueraria lobata, while wet habitat exhibited low seedling density (57,895 trees/ha), with the main species being Stephanandra incisa, Castanea crenata, Lespedeza maximowiczii, Lysimachia barystachys, Aralia elata, and Styrax japonicus. The height and root-collar diameter under wet conditions exhibited faster growth than those under dry conditions. Height growth by the root-collar diameter in dry habitat increased faster than that in wet habitat. It was also confirmed that seedling regeneration in wet habitat exhibited a rapid growth pattern 5 years after germination. These results suggest that the seedlings begin to grow more rapidly after a period of suppression by competition with surrounding plants. Considering an ecosystem or ecological management approach, specific practices, such as bush control and vine clearing in wet habitats, should be more intensively conducted, especially at the beginning of the management operations.