DOI QR코드

DOI QR Code

Investigation of Genetic Diversity of Fusarium oxysporum f. sp. fragariae Using PCR-RFLP

  • Kim, Ji-Su (Division of Applied Life Science (BK21 Plus) and Institute of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Kang, Nam Jun (Department of Agricultural Plant Science and Institute of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Division of Applied Life Science (BK21 Plus) and Institute of Agriculture & Life Sciences, Gyeongsang National University) ;
  • Lee, Choungkeun (R&D Coordination Division, Rural Development Administration)
  • Received : 2017.01.19
  • Accepted : 2017.02.20
  • Published : 2017.04.01

Abstract

Fusarium wilts of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a serious soil-borne disease. Fusarium wilt causes dramatic yield losses in commercial strawberry production and it is a very stubborn disease to control. Reliable chemical control of strawberry Fusarium wilt disease is not yet available. Moreover, other well-known F. oxysporum have different genetic information from F. oxysporum f. sp. fragariae. This analysis investigates the genetic diversity of strawberry Fusairum wilt pathogen. In total, 110 pathogens were isolated from three major strawberry production regions, namely Sukok, Hadong, Sancheong in Gyeongnam province in South Korea. The isolates were confirmed using F. oxysporum f. sp. fragariae species-specific primer sets. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analyses were executed using the internal transcribed spacer, intergenic spacer, translation elongation factor1-${\alpha}$, and ${\beta}$-tubulin genes of the pathogens and four restriction enzymes: AluI, HhaI, HinP1I and HpyCH4V. Regarding results, there were diverse patterns in the three gene regions except for the ${\beta}$-tubulin gene region. Correlation analysis of strawberry cultivation region, cultivation method, variety, and phenotype of isolated pathogen, confirmed that genetic diversity depended on the classification of the cultivated region.

Keywords

References

  1. Armstrong, G. M. and Armstrong, J. K. 1981. Formae speciales and races of Fusarium oxysporum causing wilt diseases. In: Fusarium: diseases, biology, and taxonomy, eds. by P. E. Nelson, T. A. Toussoun and R. J. Cook, pp. 391-399. The Pennsylvania State University Press, University Park, PA, USA.
  2. Bogale, M., Wingfield, B. D., Wingfield, M. J. and Steenkamp, E. T. 2007. Species-specific primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiol. Lett. 271: 27-32. https://doi.org/10.1111/j.1574-6968.2007.00687.x
  3. Cha, J. Y., Han, S., Hong, H. J., Cho, H., Kim, D., Kwon, Y., Kwon, S. K., Crüsemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y. S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
  4. Couteaudier, Y. and Alabouvette, C. 1990. Survival and inoculum potential of conidia and chlamydospores of Fusarium oxysporum f.sp. lini in soil. Can. J. Microbiol. 36:551-556. https://doi.org/10.1139/m90-096
  5. Donaldson, G. C., Ball, L. A., Axelrood, P. E. and Glass, N. L. 1995. Primer sets developed to amplify conserved genes from filamentous ascomycetes are useful in differentiating Fusarium species associated with conifers. Appl. Environ. Microbiol. 61:1331-1340.
  6. Dubey, S. C., Priyanka, K. and Upadhyay, B. K. 2014. Development of molecular markers and probes based on TEF-1${\alpha}$, ${\beta}$-tubulin and ITS gene sequences for quantitative detection of Fusarium oxysporum f. sp. ciceris by using real-time PCR. Phytoparasitica 42:355-366. https://doi.org/10.1007/s12600-013-0369-y
  7. Edel, V., Steinberg, C., Avelange, I., Laguerre, G. and Alabouvette, C. 1995. Comparison of three molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology 85:579-585. https://doi.org/10.1094/Phyto-85-579
  8. Fang, X. L., Phillips, D., Li, H., Sivasithamparam, K. and Barbetti, M. J. 2011. Severity of crown and root diseases of strawberry and associated fungal and oomycete pathogens in Western Australia. Australas. Plant Pathol. 40:109-119. https://doi.org/10.1007/s13313-010-0019-5
  9. Gang, G. H., Cho, H. J., Kim, H. S., Kwack, Y. B. and Kwak, Y. S. 2015. Analysis of fungicide sensitivity and genetic diversity among Colletotrichum species in sweet persimmon. Plant Pathol. J. 31:115-122. https://doi.org/10.5423/PPJ.OA.03.2015.0033
  10. Hausner, G. and Wang, X. 2005. Unusual compact rDNA gene arrangements within some members of the Ascomycota: evidence for molecular co-evolution between ITS1 and ITS2. Genome 48:648-660. https://doi.org/10.1139/g05-037
  11. Hillis, D. M. and Dixon, M. T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66: 411-453. https://doi.org/10.1086/417338
  12. Kachuei, R., Yadegari, M. H., Safaie, N., Ghiasian, A., Noorbakhsh, F., Piranfar, V. and Rezaie, S. 2015. PCR-RFLP patterns for the differentiation of the Fusarium species in virtue of ITS rDNA. Curr. Med. Mycol. 1:4-11. https://doi.org/10.18869/acadpub.cmm.1.1.4
  13. Katan, T. 1999. Current status of vegetative compatibility groups in Fusarium oxysporum. Phytoparasitica 27:51-64. https://doi.org/10.1007/BF02980727
  14. Katan, T., Shlevin, E. and Katan, J. 1997. Sporulation of Fusarium oxysporum f. sp. lycopersici on stem surfaces of tomato plants and aerial dissemination of inoculum. Phytopathology 87:712-719. https://doi.org/10.1094/PHYTO.1997.87.7.712
  15. Kim, D. R., Gang, G. H., Cho, H. J., Myung, I. S., Yoon, H. S. and Kwak, Y. S. 2015. Development of control method for strawberry bacterial angular spot disease (Xanthomonas fragariae). Korean J. Pestic. Sci. 19:287-294 (in Korean). https://doi.org/10.7585/kjps.2015.19.3.287
  16. Kim, H. J. and Min, B. R. 2004. Nucleotide divergence analysis of IGS region in Fusarium oxysporum and its formae speciales based on the sequence. Mycobiology 32:119-122. https://doi.org/10.4489/MYCO.2004.32.3.119
  17. Kistler, H. C., Bosland, P. W., Benny, U., Leong, S. and Williams, P. H. 1987. Relatedness of strains of Fusarium oxysporum from crucifers measured by examination of mitochondrial and ribosomal DNA. Phytopathology 77:1289-1293. https://doi.org/10.1094/Phyto-77-1289
  18. Koike, S. T., Kirkpatrick, S. C. and Gordon, T. R. 2009. Fusarium wilt of strawberry caused by Fusarium oxysporum in California. Plant Dis. 93:1077-1077.
  19. Manicom, B. Q., Bar-Joseph, M., Kotze, J. M. and Becker, M. M. 1990. A restriction fragment length polymorphism probe relating vegetative compatibility groups and pathogenicity in Fusarium oxysporum f. sp. dianthi. Phytopathology 80:336-339. https://doi.org/10.1094/Phyto-80-336
  20. Mass, J. L. 2013. Compendium of strawberry disease. 2nd ed. APS Press, St. Paul, MN, USA.
  21. Matuo, T., Komada, H. and Matsuda, A. 1980. Fusarium disease of cultivated plants. Zenkoku Noson Kyoiku Kyokai, Tokyo, Japan.
  22. Nelson, P. 1981. Life cycle and epidemiology of Fusarium oxysporum. In: Fungal wilt diseases of plants, eds. by M. E. Mace, A. A. Bell and C. H. Beckman, pp. 51-78. Academic Press, New York, NY, USA.
  23. Park, J. E., Kim, H. M. and Hwang, S. J. 2012. Effect of harvest time, precooling, and storage temperature for keeping the freshness of 'Maehyang' strawberry for export. J. Bio-Environ. Control 21:404-410 (in Korean). https://doi.org/10.12791/KSBEC.2012.21.4.404
  24. Porebski, S., Bailey, L. G. and Baum, B. R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8-15. https://doi.org/10.1007/BF02772108
  25. Rekah, Y., Shtienberg, D. and Katan, J. 2000. Disease development following infection of tomato and basil foliage by airborne conidia of the soilborne pathogens Fusarium oxysporum f. sp. radicis-lycopersici and F. oxysporum f. sp. basilici. Phytopathology 90:1322-1329. https://doi.org/10.1094/PHYTO.2000.90.12.1322
  26. Suga, H., Hirayama, Y., Morishima, M., Suzuki, T., Kageyama, K. and Hyakumachi, M. 2013. Development of PCR primers to identify Fusarium oxysporum f. sp. fragariae. Plant Dis. 97:619-625. https://doi.org/10.1094/PDIS-07-12-0663-RE
  27. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, San Diego, CA, USA.