• Title/Summary/Keyword: Commercial Finite Element

Search Result 1,042, Processing Time 0.024 seconds

Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis (준해석 설계민감도를 위한 변위하중법)

  • Yoo Jung Hun;Kim Heung Seok;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod (수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구)

  • 권영두;노권택;이창섭;홍상표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

Development of a Finite Element for Vibration Analysis of an Annular Plate with Slight Deviation (미소한 비대칭이 존재하는 원판의 진동해석을 위한 유한요소 개발)

  • 김민중;정진태;이장무
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.361-366
    • /
    • 2000
  • In this paper, a new finite annular plate element is developed, which considers the effects of the slight deviation from a perfect axisymmetry. It is assumed that, when a local deviation is introduced to an axisymmetric plate, the natural modes are separated into the symmetric and asymmetric modes. The proposed method is very efficient because a few elements are demanded and lots of active degrees of freedom are reduced in comparison with commercial numerical analysis programs. In addition, when the deviation is small enough. It is more accurate than the result of using usual plate elements of commercial FEM programs.

  • PDF

Finite Element Analysis of Metal Bonded Rubber Spring (금속-고무 스프링의 유한요소 해석)

  • 우창수;김완두
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.474-481
    • /
    • 1998
  • Metal bonded rubber spring is used in primary suspension component of the high speed train. The aim of this study is to establish a finite element analysis technique for the metal bonded rubber spring. Some theoretical analyses were performed on the hyperelastic behavior in rubber material and test are carried out to acquire the constants in strain energy function for it. Also, finite element analysis were executed to evaluate the design parameter and behavior of deformation and stress distribution using by the commercial finite element code.

  • PDF

Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen (엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정)

  • Heo, Eun Ju;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.

Thermoelastic Contact Analysis of Drum Brakes by Finite Element Method (유한요소법에 의한 드럼 브레이크의 열탄성 접촉해석)

  • Seo, Jung-Won;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.381-386
    • /
    • 2000
  • The brake force of drum brakes for commercial vehicles is applied by a s-cam. First of all the influence of the s-cam load angles and elastic modulus of the pad on the contact pressure distribution between pad and drum was checked by using 3 dimensional finite element model. In the second part, temperature and thermal stress analyses were carried out by an axisymmetric model with constant heat flux and pressure-proportional heat flux. In the case of temperature analysis the heat conduction from the interface to the pad and the drum was modeled using a thin soft film element, so artificial division of the generated heat flux between pad and drum is not necessary. The analysis was performed by ABAQUS/Standard code.

  • PDF

FINITE ELEMENT BASED FORMULATION OF THE LATTICE BOLTZMANN EQUATION

  • Jo, Jong-Chull;Roh, Kyung-Wan;Kwon, Young-W.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.649-654
    • /
    • 2009
  • The finite element based lattice Boltzmann method (FELBM) has been developed to model complex fluid domain shapes, which is essential for studying fluid-structure interaction problems in commercial nuclear power systems, for example. The present study addresses a new finite element formulation of the lattice Boltzmann equation using a general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method, and method of moments are used for finite element based Lattice Boltzmann solutions. Different finite element geometries, such as triangular, quadrilateral, and general six-sided solids, were used in this work. Some examples using the FELBM are studied. The results were compared with both analytical and computational fluid dynamics solutions.

A new finite element formulation for vibration analysis of thick plates

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.324-345
    • /
    • 2015
  • A new procedure for determining properties of thick plate finite elements, based on the modified Mindlin theory for moderately thick plate, is presented. Bending deflection is used as a potential function for the definition of total (bending and shear) deflection and angles of cross-section rotations. As a result of the introduced interdependence among displacements, the shear locking problem, present and solved in known finite element formulations, is avoided. Natural vibration analysis of rectangular plate, utilizing the proposed four-node quadrilateral finite element, shows higher accuracy than the sophisticated finite elements incorporated in some commercial software. In addition, the relation between thick and thin finite element properties is established, and compared with those in relevant literature.

Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 개선된 변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF