• Title/Summary/Keyword: Commercial CFD

Search Result 816, Processing Time 0.023 seconds

Numerical Study of Metal Particle Behaviors and Flow Characteristics in Flame Spray Process (화염 스프레이 공정에서 미세 금속 입자의 거동 및 유동 특성에 대한 수치해석 연구)

  • Shin, Dong-Hwan;Lee, Jae-Bin;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • The present study conducted computational simulation for multiphase flow in the flame spray coating process with commercially available Ni-Cr powders. The flows in a flame spray gun is characterized by very complex phenomena including combustion, turbulent flows, and convective and radiative heat transfer. In this study, we used a commercial computational fluid dynamics (CFD) code of Fluent (ver. 6.3.26) to predict gas dynamics involving combustion, gas and particle temperature distributions, and multi-dimensional particle trajectories with the use of the discrete phase model (DPM). We also examined the effect of particle size on the flame spray process. It was found that particle velocity and gas temperature decreased rapidly in the radial direction, and they were substantially affected by the particle size.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.

MULTI-SCALE SIMULATION FOR DESIGN OF A CATALYTIC MULTI-TUBULAR REACTOR (다관식 촉매 반응기 설계를 위한 multi-scale simulation)

  • Shin Sang-Baek;Im Ye-Hoon;Ha Kyoung-Su;Urban Zbigniew;Han Sang-Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.49-53
    • /
    • 2005
  • This paper presents a multi-scale hybrid simulation for the design of a catalytic multi-tubular reactor with high performance. The multi-tubular reactor consists of shell and a large number of tubes in which various catalytic chemical reactions occur. To consider fluid dynamics in the shell-side and kinetics in the tube-side at the same time, commercial CFD package and process simulation tool are coupled. This hybrid approach allowed us to predict many kinds of meaningful results such as tube center temperature profile, heat transfer coefficients on the tube wall, temperature rise of cooling medium, pressure drop through shell and tube side, concentration profile of each chemical species along the tube, and so on., and to achieve the optimal reactor design.

  • PDF

CFD Analysis for Optimization of Guide Vane of Axial-Flow Pump (축류펌프 안내 깃 최적화 설계를 위한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.519-525
    • /
    • 2016
  • In a pump, from the performance point of view, it is very important to minimize the shock loss at the inlet of the rotor blades. In this study, the effects of shape and install angle of the inlet guide on the performance of an axial-flow pump are numerically simulated using commercial CFD code, Ansys CFX. Finally, to obtain the optimized shape of the vanes and the install angle of the vanes in the inlet guide under given operating conditions, optimization analysis is conducted using Analysis design exploration based on response surface optimization.

Performance analysis of a 3 bladed & 5 bladed savonius rotor for wave energy conversion by CFD

  • Zullah, Mohammed Aisd;Prasad, Deepak;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.628-629
    • /
    • 2009
  • A variety of technologies have already been developed to capture energy from the ocean waves, this one is simple to construct. Rather then looking at the surface waves, the technique used lets the waters current beneath the waves directly drive the rotors. The novel ocean wave energy convertor consists of savonius rotor which is mounted in the ocillating water column (OWC) chamber. This study investigates the performance of a 3 blade and 5 bladed savonius rotor under same wave condition using commercial CFD code. Initially the performance analysis of savonius type turbine have been carried out with conventional three bladed curved rotors. From the experieneces of the simulations, 5 bladed savonius rotor have been developed and studied. Performace caracteristics of the 5 bladed savonius rotor has been evaluated and the results obgtained are comopared with the conventional three bladed curved rotors.

  • PDF

Study for the Power Characteristic of NREL Phase VI Blade considering Wind Shear (Wind Shear를 고려한 NREL Phase VI 블레이드의 출력특성연구)

  • Park, Sangjun;Lee, Kyungseh;Kim, Youngchan;Park, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.56.2-56.2
    • /
    • 2011
  • As rotor blade of a wind turbine becomes larger to satisfy the economic efficiency for offshore wind farm, the numerical analysis considering wind profile is getting emphasized. In this paper, the study for the power characteristic of a wind turbine is carried out using NREL phase VI wind turbine applied wind profile. The experimental data of NASA Ames wind tunnel for inflow velocity 7m/s is used and the numerical result is obtained by using CFD commercial solver(FLUENT).

  • PDF

Flow Analysis of Check Valve for Hydrogen Vehicle Refueling Line (수소자동차의 연료주입라인용 Check Valve 내의 유동해석)

  • Park, Kyong-Taek;Yeo, Kyeong-Mo;Park, Tae-Jo;Kang, Byeong-Roo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.565-568
    • /
    • 2007
  • The high pressure hydrogen gas refueling system is required for fuel cell vehicle. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is adopted to investigate the gas flow characteristics inside the check valve for various refueling and tank pressures. The results showed that the choking phenomena can occur for certain refueling pressures, therefore refueling processes should be divided by multiple stages. And a design method to prevent the seal departure problem which reported in CNG usages is required.

  • PDF

An experimental study for developing of silencer to be adapted large gun (대구경 화포용 소음기 개발을 위한 실험적 연구)

  • Lee, Hae suk;Park, Sung ho;Kim, Sang min;Kang, Tae yeop;Kim, Heung soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.558-563
    • /
    • 2014
  • To reduce the transmission of large gun-generated noise from the firing test range to the community, we have tested a silencer to be used with howitzer(155mm KM114A2) after simulation. Numerical analysis was conducted by using a commercial CFD code, FLUENT. To analyze complex blast flow fields, the Spalart-Allmaras model was applied under 2 dimensional and axisymmetric conditions. Firing tests were also performed with the KM114A2 howitzer while the silencer was installed. This paper describes a result of comparison between results of computer analysis and test outcomes which were gotten by firing 155mm projectiles at the testing range. This paper will also be informative to the muffler design which will be adapted to 155mm large gun in the future.

  • PDF

Bluff body asymmetric flow phenomenon - real effect or solver artefact?

  • Prevezer, Tanya;Holding, Jeremy;Gaylard, Adrian;Palin, Robert
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.359-368
    • /
    • 2002
  • This paper describes a CFD investigation into the flow over the cab of a bluff-fronted lorry. Several different simulations were undertaken, using the commercial codes: CFX, Fluent and PowerFLOW. Using the $k-{\varepsilon}$ turbulence model, the flow over the cab was symmetric, however, using more accurate turbulence models such as the RNG $k-{\varepsilon}$ model or the Reynolds Stress Model, the flow was asymmetric. The paper discusses whether this phenomenon is a real effect or whether it is a solver artefact and the study is supported by experimental evidence. The findings are preliminary, but suggest that it has a physical origin and that it may be aspect ratio-dependent.

A general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow

  • Baudille, Riccardo;Biancolini, Marco Evangelos
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.449-465
    • /
    • 2008
  • In this paper a general approach for studying the motion of a cantilever beam interacting with a 2D fluid flow is presented. The fluid is solved by a general purpose commercial computational fluid dynamics (CFD) package (FLUENT 6.2), while the structure is managed by means of a dedicated finite element method solver, coded in FLUENT as a user-defined function (UDF). A weak fluid structure interaction coupling scheme is adopted exchanging information at the end of each time step. An arbitrary cantilever beam can be introduced in the CFD mesh with its wetted boundaries specified; the cantilever can also interact with specified rigid and flexible walls through use of a non-linear contact algorithm. After a brief review of relevant scientific contributions, some test cases and application examples are presented.