• Title/Summary/Keyword: Command&Control

Search Result 1,396, Processing Time 0.041 seconds

Sequencing Strategy for Autonomous Mobile Robots in Real Environments (이동로봇 자율주행을 위한 행위모듈의 실행순서 조정기법)

  • 송인섭;박정민;오상록;조영조;박귀태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.297-305
    • /
    • 1999
  • Autonomous mobile robots are required to achieve multiple goals while responding quickly to the dynamic environments. An appropriate robot control architecture, which clearly and systematically defines the relationship among the inputs, the processing functions and the outputs, thus needs to be embedded in the robot controller. This paper proposes a kind of hybrid control architecture which combines the key features of the two well-known robot control architectures; hierarchical and behavioral- based. The overall control architecture consists of three layers, i.e. the highest planner, the middle plan executor, and the lowest monitor and behavior-based controller. In the planned situation, only one behavior module is chosen by the logical coordinator in the plan executor according to the way point bin. In the exceptional situation, the central controller in the plan executor issues an additional control command to reach the planned way point. Several simulations and experiments with autonomous mobile robot show that the proposed architecture enables the robot controller to achieve the multiple sequential goals even in dynamic and uncertain environments.

  • PDF

Receding horizon tracking control as a predicitive control for the continuous-time systems

  • Noh, Seon-Bong;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1055-1059
    • /
    • 1990
  • This paper proposed a predictive tracking controller for the continuous-time systems by using the receding horizon concept in the optimal tracking control. This controller is the continuous-time version of the previous RHTC (Receding Horizon Tracking Control) for the discrete-time state space models. The problems in implementing the feedforward part of this controller is discussed and a approximate method of implementing this controller is presented. This approximate method utilizes the information of the command signals on the receding horizon and has simple constant feedback and feedforward gain. To perform the offset free control, the integral action is included in the continuous time RHTC. By simulation it is shown that the proposed method gives better performance than the conventional steady state tracking control.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure Considering Dynamics of MR Damper (지진하중을 받는 구조물의 MR 유체 감쇠기를 이용한 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.403-410
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro - controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Improvement of elevator position control performance in unified control system (통합 제어 시스템에서의 엘리베이터 위치 제어 성능 개선)

  • Ryu, Hyung-Min;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.34-36
    • /
    • 2002
  • This paper addresses an elevator position control scheme in unified control system. Conventional systems have employed independent micro-processors for speed, car, and group control respectively and the car controller generates a velocity command by combining the time-based and distance-based velocity pattern. In this scheme, it is inevitable that an elevator creeps in the vicinity of target floor, or stops abruptly. The proposed control system employs only one high-performance micro-processor, which can execute the car and group control as well as the speed control. It simply generates the desired position trajectory based on time and on-line corrects a velocity pattern to make the position error be zero. Experimental results show the feasibility of the proposed control scheme.

  • PDF

MPC-based Active Steering Control using Multi-rate Kalman Filter for Autonomous Vehicle Systems with Vision (비젼 기반 자율주행을 위한 다중비율 예측기 설계와 모델예측 기반 능동조향 제어)

  • Kim, Bo-Ah;Lee, Young-Ok;Lee, Seung-Hi;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.735-743
    • /
    • 2012
  • In this paper, we present model predictive control (MPC) applied to lane keeping system (LKS) based on a vision module. Due to a slow sampling rate of the vision system, the conventional LKS using single rate control may result in uncomfortable steering control rate in a high vehicle speed. By applying MPC using multi-rate Kalman filter to active steering control, the proposed MPC-based active steering control system prevents undesirable saturated steering control command. The effectiveness of the MPC is validated by simulations for the LKS equipped with a camera module having a slow sampling rate on the curved lane with the minimum radius of 250[m] at a vehicle speed of 30[m/s].

A Study on the Torque Control Method of a Hydraulic Actuation System for Measuring the Dynamic Stiffness of Missile Fin Actuators (유도무기용 날개구동기의 동적 강성 측정을 위한 유압 구동장치의 토크제어 기법에 관한 연구)

  • Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • This paper presents a torque control method of a hydraulic actuation system for measuring the dynamic stiffness of missile fin actuators. We propose a new control technique called Dual Dynamic Torque Feedback Control(DDTFC), which improves the stability of the torque control system and enables fast tracking of torque command. The developed control scheme is derived from the physical understanding based on mathematical modelling and analysis. The dynamics of hydraulic torque control servo-system is unravelled via physics-based modelling and nonparametric system identification. In order to verify the effectiveness of the method, the experiment is carried out with a test equipment for measuring the dynamic stiffness. The experiment and simulation results show that DDTFC gives stability improvement.

Semiactive Neuro-control for Seismically Excited Structure considering Dynamics of MR Damper (자기유변유체감쇠기의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.473-480
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semiactive control system using MR fluid dampers has many attractive features, such as bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semiactive neuro-control strategy using MR fluid dampers could be effective used for control seismically excited structures.

  • PDF

A Motion-Control Chip to Generate Velocity Profiles of Desired Characteristics

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.563-568
    • /
    • 2005
  • A motion-control chip contains major functions that are necessary to control the position of each motor, such as generating velocity command profiles, reading motor positions, producing control signals, driving several types of servo amplifiers, and interfacing host processors. Existing motion-control chips can only generate velocity profiles of fixed characteristics, typically linear and s-shape smooth symmetric curves. But velocity profiles of these two characteristics are not optimal for all tasks in industrial robots and automation systems. Velocity profiles of other characteristics are preferred for some tasks. This paper proposes a motion-control chip to generate velocity profiles of desired acceleration and deceleration characteristics. The proposed motion-control chip is implemented with a field-programmable gate array by using the Very High-Speed Integrated Circuit Hardware Description Language and Handel-C. Experiments using velocity profiles of four different characteristics will be performed.

  • PDF

Position Control Algorithm of a PMSM for the Elevator Door System (엘리베이터 도어 시스템을 위한 PMSM의 위치제어 알고리즘)

  • Song, Ki-Young;Cho, Kwan-Yuhl;Kim, Hag-Wone;Oh, Hyun-Cheal
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.17-18
    • /
    • 2012
  • Generally, speed control system is used to control the elevator door. The whole speed profile must be installed in the speed controller of the door control system. However, it is not easy to modify the speed profile when door opening size and time are changed. In this paper, the making speed profile is discussed by the door opening size and time. The position control algorithms of PMSM for elevator door system are compared with general speed control, position control method with speed controller, and position control with speed command feedforward compensation by simulation using MATLAB/SIMULINK.

  • PDF

Vibration Suppression control for an Articulated Robot: Effects of Model-Based Control Applied to a Waist Axis

  • Collier, T.;Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.31.4-31
    • /
    • 2001
  • This paper deals with a control technique of eliminating the transient vibration of a waist axis of an articulated robot. This technique is based on a model-based control in order to establish the damping effect on the mechanical part. The control model is composed of reduced-order electrical and mechanical parts. This model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and is added to the velocity command to suppress the transient vibration of a waist axis of the arm. This control model is easily obtained from design or experimental data and can be easily integrated into a DSP. This control technique is applied to a waist axis of an articulated robot composed of a harmonic drive ...

  • PDF