• Title/Summary/Keyword: Command&Control

Search Result 1,396, Processing Time 0.03 seconds

Vibration Suppression Control for a Twin-Drive Geared Mechanical System with Backlash: Effects of Model-Based Control

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1392-1397
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a twin-drive geared mechanical system. This technique is based on a model-based control in order to establish the damping effect at the driven machine part. The control model is composed of reduced-order electrical and mechanical parts. This control model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a twin-drive geared system with backlash. In the previous work, the performance of this control method is examined by simulations. In this paper, the effectiveness of this control technique is verified by experiments. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

A design on optimal PD control system that has the robust performance (강인한 성능을 가지는 최적 PD 제어 시스템 설계)

  • Kim, Dong-Wan;Hwang, Hyeon-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.656-666
    • /
    • 1999
  • In this paper, we design the optimal PD control system which has the robust performance. This PD control system is designed by applying genetic algorithm (GA) to the determination of proportional gain KP and derivative gain KD that are given by PD servo controller, to make the output of plant follow the output of reference model optimally. These proportional and derivatibe gains are simultaneously optimized in the search domain guaranteeing the robust performance of system. And, this PD control system is compared with $\mu$ -synthesis control system for the robust performance. The PD control system designed by the proposed method has not only the robust performance but also the better command tracking performance than that of the $\mu$ -synthesis control system. The effectiveness of this control system is verified by computer simulation.

  • PDF

Feed Forward Control of the MW Wind Turbine (MW 풍력터빈의 피드포워드 제어)

  • Im, Chang-hee;Nam, Yoon-su;Kim, Jeong-gi;Choi, Han-soon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • his dissertation is on power control system for MW-class wind turbine. Especially, the control purpose is reduction in electrical power and rotor speed. The base control structure is power curve tracking control using variable speed variable pitch operational type. For the reduction of fluctuations, more control algorithm is needed in above rated wind conditions. Because general pitch control system is low dynamic response as compared with the wind speed change. So, this paper introduces about the pitch feed forward control to minimize fluctuations of the electrical power and rotor speed. To maintain rated electrical power, the algorithm of feed forward control adds feed forward pitch amount to the pitch command of power curve tracking control. The effectiveness of the feed forward control is verified through the simulation.

Design of Authentication Mechinism for Command Message based on Double Hash Chains (이중 해시체인 기반의 명령어 메시지 인증 메커니즘 설계)

  • Park Wang Seok;Park Chang Seop
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2024
  • Although industrial control systems (ICSs) recently keep evolving with the introduction of Industrial IoT converging information technology (IT) and operational technology (OT), it also leads to a variety of threats and vulnerabilities, which was not experienced in the past ICS with no connection to the external network. Since various control command messages are sent to field devices of the ICS for the purpose of monitoring and controlling the operational processes, it is required to guarantee the message integrity as well as control center authentication. In case of the conventional message integrity codes and signature schemes based on symmetric keys and public keys, respectively, they are not suitable considering the asymmetry between the control center and field devices. Especially, compromised node attacks can be mounted against the symmetric-key-based schemes. In this paper, we propose message authentication scheme based on double hash chains constructed from cryptographic hash function without introducing other primitives, and then propose extension scheme using Merkle tree for multiple uses of the double hash chains. It is shown that the proposed scheme is much more efficient in computational complexity than other conventional schemes.

Trajectory Optimization and the Control of a Re-entry Vehicle during TAEM Phase using Artificial Neural Network (재진입 비행체의 TAEM 구간 최적궤적 설계와 인공신경망을 이용한 제어)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Min, Chan-Oh;Cho, Sung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.350-358
    • /
    • 2009
  • This paper describes a result of the guidance and control for re-entry vehicle during TAEM phase. TAEM phase (Terminal Aerial Energy Management phase) has many conditions, such as density, velocity, and so on. Under these conditions, we have optimized trajectory and other states for guidance in TAEM phase. The optimized states consist of 7 variables, down-range, cross range, altitude, velocity, flight path angle, vehicle's azimuth and flight range. We obtained the optimized reference trajectory by DIDO tool, and used feedback linearization with neural network for control re-entry vehicle. By back propagation algorithm, vehicle dynamics is approximated to real one. New command can be decided using the approximated dynamics, delayed command input and plant output, NARMA-L2. The result by this control law shows a good performance of tracking onto the reference trajectory.

A Development of The Remote Robot Control System with Virtual Reality Interface System (가상현실과 결합된 로봇제어 시스템의 구현방법)

  • 김우경;김훈표;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.320-324
    • /
    • 2003
  • Recently, Virtual reality parts is applied in various fields of industry. In this paper we got under control motion of reality robot from interface manipulation in the virtual world. This paper created virtual robot using of 3D Graphic Tool. And we reappeared a similar image with reality robot put on texture the use of components of Direct 3D Graphic. Also a reality robot and a virtual robot is controlled by joystick. The developed robot consists of robot controller with vision system and host PC program. The robot and camera can move with 2 degree of freedom by independent remote controlling a user friendly designed joystick. An environment is recognized by the vision system and ultra sonic sensors. The visual mage and command data translated through 900MHz and 447MHz RF controller, respectively. If user send robot control command the use of simulator to control the reality robot, the transmitter/recever got under control until 500miter outdoor at the rate of 4800bps a second in Hlaf Duplex method via radio frequency module useing 447MHz frequency.

  • PDF

A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command (음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구)

  • Jo, Sang Young;Kim, Min Sung;Yang, Jun Suk;Koo, Young Mok;Jung, Yang Geun;Han, Sung Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

Understanding how agent control based on social status affects user experience factors in multi-user autonomous driving environments (다중 사용자 자율 주행 운전 환경에서 사회적 지위에 따른 에이전트의 제어권이 사용자 경험 요소에 미치는 영향)

  • JiYeon Kim;JuHye Ha;ChangHoon Oh
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.735-745
    • /
    • 2023
  • The purpose of this study is to examine how the control of an agent according to a driver's social status affects user experience factors in a multi-user environment of self-driving vehicles. We conducted a user study where participants viewed four scenarios (route changing/parking x accepting/declining a fellow passenger's command) and answered a survey, followed by a post-hoc interview. Results showed that either the routing scenario or accepting a passenger's command scenario had higher usefulness (convenience, effectiveness, efficiency) than their counterparts. Regardless of the car owner's social status, participants rated AI agents more positively when they met their goals effectively. They also stressed that vehicle owners should always be in control of their agents. This study can provide guidelines for designing future autonomous driving scenarios where an agent interacts with a driver, and passengers.

A study on the 3-axis attitude stabilization of Koreasat (무궁화 방송통신 위성의 3축 자세 안정화 장치에 관한 연구)

  • 진익민;백명진;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.793-798
    • /
    • 1993
  • In this study the attitude control of the KOREASAT is investigated. The KOREASAT is a geostationary satellite and its 3 attitude angles, namely, roll, pitch and yaw angles, are stabilized by using the 3-axis stabilization technique. In the pitch control loop, the pitch attitude angle received from the earth sensor is processed in the attitude processing electronics by using PI type control logic, and the control command is sent to the momentum wheel assembly to generate the control torque by varying the wheel rate. The roll/yaw attitude control is performed by activating a magnetic torquer or by firing appropriate thrusters. The magnetic torquer interacts with the earth magnetic field to produce the control torque, and the thrusters are used to control the larger roll attitude errors. In this study dynamic modelling of the satellite is performed. And the earth sensor, the momentum wheel, and the magnetic torquer are mathematically modelled. The 3-axis attitude control logic is implemented to make the closed-loop system and simulations are carried out to verify the implemented control laws.

  • PDF

Two-Stage Control of a Container Crane: Time Optimal Travelling and Nonlinear Residual Sway Control

  • Hong, Keum-Shik;Park, Bae-Jeong;Lee, Man-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.159-165
    • /
    • 1998
  • In this paper the sway-control problem of a container crane is investigated. The control loop is divided into two stages. The first stage is a modified time optimal control for trolley traversing. The velocity command for trolley traversing consists of three components ; a reference velocity and two feedback signals for compensating the deviations of trolley and sway angle from their desired trajectories. For trolley's exact positioning the trolley dynamics is identified via an error equation identifier structure. The second stage is a nonlinear residual sway control that starts at the end of first stage. The control design for the second stage is investigated from the perspective of controling an underactuated system, and the control law combines the feedback linearization and variable structure control.

  • PDF