• Title/Summary/Keyword: Comet assay(single cell gel electrophoresis assay)

Search Result 86, Processing Time 0.021 seconds

Genotoxic Effects of Diesel Exhaust Particle Extract in NIH/3T3 Cells (디젤분진이 체세포에서의 DNA 손상에 미치는 영향)

  • Heo Chan;Kim Nam Yee;Chung Kyu-Hyuek;Moon Chang-Kiu;Heo Moon Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.335-344
    • /
    • 2004
  • Diesel exhaust particle (<2.5 ${\mu}{\textrm}{m}$, DEP$_{2.5}$) is known to be probarbly carcinogenic (IARC group 2A). DEP$_{2.5}$ contains organic compounds such as polycyclicaromatic hydrocarbon (PAH), heterocyclic compounds, phenols, and nitroarenes. Reactive oxygen species (ROS) are generated by DEP$_{2.5}$ without any biological activation system. Therefore, an alternative mechanism by which DEP$_{2.5}$ could be carcinogenic is known by the generation of oxidative DNA damage. The aim of this study was to investigate genotoxic effects of DEP$_{2.5}$ using single cell gel electrophoresis. In order to evaluate the mechanisms of DEP$_{2.5}$ genotoxicity, the rat micro-some mediated and DNA repair enzyme treated comet assays together with routine comet assay were performed. DEP$_{2.5}$ was collected from diesel engine bus and dichloromethane extract was obtained. The organic extract of DEP$_{2.5}$ revealed DNA damage itself in NIH/3T3 cells. And it showed both oxidative and microsome mediated DNA damages. Vitamin C as an model antioxidant reduced DNA damage in endonuclase III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor reduced DNA damage in the presence of S-9 mixture. Our results show that DEP$_{2.5}$ are genotoxic and a great source of oxidative stress, but antioxidants can significantly reduce oxidative DNA damages. And DEP$_{2.5}$ may contain indirect mutagens which can be inhibited by CYP inhibitors.d by CYP inhibitors.

Genotoxicity and Identification of Differentially Expressed Genes of Formaldehyde in human Jurkat Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.230-236
    • /
    • 2005
  • Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.

Plasma, Tissue Thiobarbituric Acid Reactive Substance and Lymphocyte Oxidative DNA Damage in Mouse Fed Gamma Irradiated Diet (방사선 조사 사료를 섭취한 Mouse의 혈장, 간, 소장 점막의 과산화지질과 림프구 DNA의 산화적 손상)

  • 장현희;강명희;양재승;이선영
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Food irradiation has been steadily increasing in many countries in line with increasing international trade and concerns about naturally occurring harmful contaminants in food. Although irradiation provides an excellent safeguard for the consumer by destroying almost 100% of harmful bacteria, it is necessary to ensure the safety of irradiated foods. This study was performed to investigate the effect of an irradiated diet on lipid peroxidation in the plasma, liver, small intestinal mucosa, and lymphocyte DNA damage in mice. Eight-week old ICR mice were assigned to two groups to receive either non-irradiated or irradiated (10 kGy) diets containing 20.38% fish powder and 6.06% sesame seeds for 4 weeks. The resulting changes in the degrees of lipid peroxidation were evaluated based on the level of plasma and liver thiobarbituric acid reactive substance (TBARS), transmission electron micrograph of jejunal mucosa, and free radical-induced oxidative DNA damage in lymphocytes, as measured by alkaline comet assay (single cell gel electrophoresis). The peroxide values of the gamma irradiated diet were measured every week, and the sample for comet assay was taken at the end of the four week experimental period. There was no significant difference in food efficiency ratio between the two groups. The peroxide values of the diet were immediately increased to 35.5% after gamma irradiation and kept on increasing during storage. After 4 weeks, no differences in tissue or plasma TBARS value were observed between the two groups, but epithelial cells of jejumum showed osmiophillic laminated membranous structures, considered as myelin figures,. The oxidative DNA damage expressed as tail moment (TM) increased 30% in the blood lymphocytes of the mice fed the irradiated diet. In conclusion, the comet assay sensitively detected differences in lymphocyte DNA damage after feeding with the irradiated diet for 4 weeks. However, in order to ensure the safety of irradiated foods, it would be more useful to conduct a long-term feeding regimen using an irradiated diet and examine the level of lipid peroxidation and the state of oxidative stress in a greater range of organs.

GENOTOXICITY STUDY OF SOPHORICOSIDE IN BACTERIAL AND MAMMALIAN CELL SYSTEM

  • Kim, Youn-Jung;Kim, Yun-Hwa;Park, Hyo-Joung;Gil, Ji-Suk;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Park, Jong-Bum;Kim, Tae-Hwam;Ryu, Jae-Chun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.182-182
    • /
    • 2001
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to have an anti-inflammatory effect on rat paw edema model. To develope as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial test, chromosomal aberration assay and single cell gel electrophoresis (Comet) assay.(omitted)

  • PDF

Suppressive Effect of Galangin on the Formation of 8-OH2'dG and DNA Single Strand Breaks by Hydrogen Peroxide ($H_2O_2$ 유도 8-OH2'dG 생성 및 DNA Single Strand Break에 미치는 Galangin의 억제효과)

  • Kim, Soo-Hee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The aim of this study was to evaluate the effect of galangin towards hydrogen peroxide-induced DNA damage. The calf thymus DNA and Chinese Hamster Lung (CHL) cells were used to measure 8-hydroxy-2'-deoxyguanosine(8-OH2'dG) as an indicator of DNA oxidative damage using high performance liquid chromatography with electrochemical detection. Hydrogen peroxide in the presence of Fe(II) ion induced the formation of 8-OH2'dG in both calf thymus DNA and CHL cells. The DNA damage effects were enhanced by increasing the concentration of Fe(II) ion and inhibited by galangin. In the single cell gel electrophoresis (Comet assay), galangin and dl-a-tocopherol showed an inhibitory effect in CHL on hydrogen peroxide induced DNA single strand breaks. Galangin showed more potent activity than dl-$\alpha$-tocopherol under our experimental conditions. These results indicate that galangin can modify the action mechanisms of the oxidative DNA damage and may act as chemopreventive agents against oxidative stress.

Genotoxicity of Taxol and 10-Deacetyl Baccatin III Using Single Cell Gel Electrophoresis (Comet Assay) in Chinese Hamster Lung Fibroblast

  • Kim, Hyun-Joo;Kim, Kyung-Ran;Youn, Ji-Youn;Kim, Min-Hee;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.61-61
    • /
    • 1996
  • Taxol is used as cancer therapeutic agent. It has been known as weak posotive of chromosome aberration assay in vitro in our previous results (Ryu et al., 1996) and potent clastogens in the mouse bone marrow micronucleus (Tinwell and Ashby, 1994). We performed microgel electrophoresis to determine the effect of taxol and it's precursor 10-deacetyl baccatin III(DAB) on DNA. Microgel electrophoresis is useful, rapid, simple, visual, and sensitive technique for measuring DNA breakage and repair mechanisms in mammalian 근ells. The range of concentration used for taxol were 854, 427, 213.5, 106.8, 53.4 Ug/ml, for DAB 910 ,455, 227.5 U9/ml, Cell viability always exceed 85%. We analyzed the results by using the special software of image analyzer for this comet assay (Komet 3.0). By using this image analyzer software , we can get the result as the tail moment ((mean of tail length - mean of head lengh) x tail%DNA/100). A slight increase in DNA migration was observed for taxol at the concentration of 854 Ug/m4 in the absence of S9 mixture. No increased DNA migration was observed after treatment with DAB.

  • PDF

PROTECTION OF DNA BY SCUTELLARlA BAICALENSIS IN HL-60 CELLS EXPOSED TO $\gamma$-RAYS; ANALYSED BY MICRONUCLEI FORMATION AND SINGLE CELL GELL ELECTROPHORESIS

  • Heon Oh;Park, Hae-Ran;Ham, Yeon-Ho;Kim, Sung-Ho;Jo, Sung-Kee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.107-107
    • /
    • 2001
  • In the present study, the protective effect of Scutellaria baicalensis against DNA damage in HL-60 cells exposed to $^{60}$ Co ${\gamma}$-rays was evaluated using micronuclei formation and alkaline single cell gel electrophoresis (SCGE, comet assay). The frequency of micronuclei was decreased in groups treated with water extract (P<0.01), polysaccaride fraction (P<0.01) and methanol fraction (P<0.01) before/after exposure to 200 cGy of ${\gamma}$-rays.(omitted)

  • PDF

Effects of Diet with Added Butterbur (Petasites japonicus Maxim) on the Plasma Lipid Profiles and Antioxidant Index of Mice (머위(Petasites japonicus Maxim) 첨가 식이가 마우스 혈장 지질 수준 및 항산화 지표에 미치는 영향)

  • Oh Sang-Hee;Yang Yun-Hyung;Kwon Oh-Yoon;Kim Mee-Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.4
    • /
    • pp.399-407
    • /
    • 2006
  • We evaluated the effects of butterbur (Petasites japonicus Maxim) addition to the diet on lipid profiles and antioxidant biomarkers such as total glutathionine, TBARS value, carbonyl value, GPx, GR, SOD and paraoxonase activity in the plasma or liver of mice. The distribution of body fat deposition, total cholesterol (TC) contents, and atherogenic index in the plasma were significantly decreased in the butterbur group. The levels of GSH and the activity of GR and SOD were significantly higher in the liver of the butterbur group than in that of the control group. Lipid oxidation of the liver and kidney and protein oxidation of the liver and heart were decreased in the butterbur group. Additionally, the DNA damage, as determined using the comet assay (single cell gel assay) with alkaline electrophoresis and as quantified by measuring the tail length (TL), was decreased in the butterbur group. The results of the present study showed that a diet with added butterbur exerts degenerative disease-protective effects on oxidative DNA damage and lipid peroxidation.

  • PDF