• Title/Summary/Keyword: Combustor

Search Result 1,309, Processing Time 0.024 seconds

A Study on the Preliminary Design of Gas Turbine Combustor (가스터빈 연소기 기본형상 결정에 관한 연구)

  • Ahn, Kook-Young;Kim, Han-Suck;Kim, Kwan-Tae;Bae, Jin-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.135-151
    • /
    • 1997
  • The preliminary design and performance test for determining dimensions of gas turbine combustor were investigated. The combustor design program was developed and applied to design our combustor. and detailed design for determining of swirler. dome and liner holes were performed experimentally. The swirler. which govern the combustion characteristics of combustor, was determined $40^{\circ}$ as swirl angle at first performance test. After second performance test the swirler was re-determined by 24 mm i.d.. 34 mm o.d., and swirl angle of $45^{\circ}$. The geometry of liner holes were determined by considering the flame stability and recirculation zone size. It was found that flame can be more easily stabilized by adjusting the swirier dimensions rather than liner holes. The geometry of swirler and liner holes were re-determined by final performance test with dilution holes. Also. the performance of combustor was evaluated by analysis of exhaust gases.

  • PDF

Numerical Analysis of Acoustic Characteristics in Gas Turbine Combustor with Spatial Non-homogeneity

  • Sohn, Chae-Hoon;Cho, Han-Chang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1461-1469
    • /
    • 2004
  • Acoustic characteristics in an industrial gas-turbine combustor are numerically investigated by a linear acoustic analysis. Spatially non-homogeneous temperature field in the combustor is considered in the numerical calculation and the characteristics are analyzed in view of acoustic instability. Acoustic analyses are conducted in the combustors without and with acoustic resonator, which is one of the acoustic-damping devices or combustion stabilization devices. It has been reported that severe pressure fluctuation frequently occurs in the adopted combustor, and the measured signal of pressure oscillation is compared with the acoustic-pressure response from the numerical calculation. The numerical results are in good agreement with the measurement data. In this regard. the phenomenon of pressure fluctuation in the combustor could be caused by acoustic instability. From the numerical results for the combustor with present acoustic resonators installed, the acoustic effects of the resonators are analyzed in the viewpoints of both the frequency tuning and the damping capacity. It is found that the resonators with present specifications are not optimized and thus, the improved specification or design is required.

Numerical Study on the Coaxial Ramjet Combustor with a Flame Holder (램제트 연소기의 보염기 장착에 따른 연소기 특성 변화에 대한 수치적 연구)

  • Kim, Sung-Don;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.114-117
    • /
    • 2007
  • In IRR(Integral Rocket-Ramjet), the booster is integrated into the ramjet combustor. Such combustors do not contain combustor liners or flame holders within the combustor due to the limited volume and flame stabilization depends on the recirculation zones formed by the sudden expansion region between the inlet duct and the combustor. A numerical study was conducted on the effect of flame holder which could be added to the inlet duct of IRR. Two different types of flame holder installations, flame holder without sudden expansion region and flame holder with small sudden expansion region, were compared and showed different flame shapes and pressure rise in the combustor.

  • PDF

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and emission characteristic in swirl flame (연소실 압력변동과 2차 연료 분사가 스월 화염에서 화염안정화와 배출 특성에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.133-138
    • /
    • 2007
  • Influence of changing combustor pressure on flame stabilization and emission index in the swirl-stabilized flame was investigated The combustor pressure was controlled by suction fan at combustor exit. Pressure index ($P^{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, respectively, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed similar tendency with laminar flames. $NO_x$ emission index decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s. of pressure fluctuations is increased with decreasing combustor pressure. This flame fluctuation caused incomplete combustion , hence CO emission index increased. These oscillating flames were measured by simultaneous $CH{\ast}$ chemiluminescence time-series visualization and pressure fluctuation measurement.

  • PDF

A Study on the Combustion Characteristics of a Hybrid Cyclone Jet Combustor (하이브리드 사이클론 제트 연소기의 연소특성에 관한 연구)

  • Jung, Won-Suk;Hwang, Chul-Hong;Lee, Gyou-Young;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.149-155
    • /
    • 2002
  • A promising new approach to achieve low pollutants emission and improvement of flame stabilities is tested experimentally using a hybrid cyclone jet combustor employing both premixed and diffusion combustion mode, Three kind of nozzles are used for LNG(Liquified Natural Gas) as a fuel. The combustor is operated by two method, One is ATI(Air Tangential Injection) mode, generated swirl flow by air as general swirl combustor, and the other is PTI(Premixed gas Tangential Injection) mode, The PTI mode consists of diffusion flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion flame. The results showed that the stable region of the PTI mode is more larger than the ATI mode. In addition, the reduction of NOx emission in PTI mode, as compared with that for the ATI mode is at least 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, the cyclone jet combustor has high performance of flame stability.

  • PDF

Preliminary Design Program Development for Aircraft Gas Turbine Combustors : Part 1 - Combustor Sizing (항공용 가스터빈 연소기 기본 설계 프로그램 개발 : Part 1 - 연소기 크기 결정)

  • Kim, Daesik;Ryu, Gyong Won;Hwang, Ki Young;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.54-60
    • /
    • 2013
  • This paper shows a general development process for aircraft gas turbine combustors. As a first step for developing the preliminary combustor design program, several combustor sizing methodologies using reference area concepts are reviewed. There are three ways to determine the reference area; 1) combustion efficiency approach, 2) pressure loss approach, 3) velocity assumption approach. The current study shows the comparisons of the calculated results of combustor reference values from the pressure loss and velocity assumption approaches. Further works are required to add iterative steps in the program using more reasonable values of pressure loss and velocities, and to evaluate the sizing results using data for actual combustor performance and sizes.

Status of Combustor Development for Industrial Gas Turbine (산업용 가스터빈 연소기 개발 현황)

  • Ahn, Chulju;Park, Heeho;Kim, Min-Ki;Kim, Myeonghyo;Jung, Seungchai;Kim, Kitae;Shon, Youngchang
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.113-116
    • /
    • 2013
  • The Samsung Techwin has been developed the various types of combustor and fuel nozzle frontal devices for the aero engine and small scale industrial gas turbines. Currently, we have been developed the highly heat capacity and long-lived gas turbine combustor based on the short-lived combustor and fuel injector technologies. In this paper, the market trends and the information on the survey of an advanced gas turbine combustor were introduced for the development of large scale gas turbine combustor and fuel nozzle assembly.

  • PDF

A study on Flow Characteristics of Gas Turbine Type Combustor (가스터어빈형 연속유연소기의 유동에 관한 연구(I) - 연소기의 설계 및 시작 -)

  • 이근오;김형섭
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.3
    • /
    • pp.37-43
    • /
    • 1987
  • The combustion process in gas turbine combustor mainly influenced by flow pattern in combustor, and especially the flow pattern near the nozzle and the shape of recirculation zone affect strongly on the flame stabilization, temperature distribution and combustion efficiency in combustor. In this paper, the author has designed and manufactured transparent simplified model combustors on the basis of K. Suzuki's combustor design method to investigate the effects of swirl number and secondary air hold arrays in axial position on the flow characteristics by adopting the tuft method and 5 hole pitot tube.

  • PDF

Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor (마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구)

  • Oh, Chang-Bo;Choi, Byung-il;Han, Yong-shik;Kim, Myung-bae;Hwang, Cheol-hong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1900-1905
    • /
    • 2007
  • A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

  • PDF

Development of Model for Heat Loss from a Micro Combustor Using Pressure Simulation (압력 변화 모사를 통한 초소형 연소기에서의 열손실 예측 모텔 개발)

  • Choi, Kwon-Hyoung;Kwon, Se-Jin;Lee, Dad-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.