• Title/Summary/Keyword: Combustion velocity

Search Result 894, Processing Time 0.032 seconds

Theoretical Analysis and Study of Design of Autothermal Reformer for Use in Fuel Cell (연료전지용 열분해 개질기의 이론해석 및 설계연구)

  • Kang, Il-Hwan;Kim, Hyung-Man;Choi, Kap-Seung;Wang, Hak-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.58-63
    • /
    • 2005
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

  • PDF

The Interior ballistic Properties of non-solvent double based gun propellants (무용제 복기 화포 추진제의 강내탄도 특성)

  • 이정환;권순길;황준식;이해석;김구일;최병오
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • JA2 Propellants, made by non-solvent process, are of great interest for the tank gun propellant. This is due to high energy. The grain geometries of JA2 and modified JA2 propellant were designed for application to 105mm APFSDS projectile. The combustion, thermochemical, and interior ballistic properties of the propellant were tested and calculated. The performances of the propellant were evaluated out using 105mm slug T2 projectiles and 105mm tank gun. The muzzle velocity of the propellants was higher than that of the KM30 for K274 projectile.

  • PDF

Measurement of Spray Characteristic Parameters for Inquiry into Small LRE-Injector's Injection Performance (소형 액체로켓엔진 인젝터의 분사성능 고찰을 위한 분무특성 매개변수 측정)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.141-144
    • /
    • 2009
  • An injector plays an important role in the process of an efficient combustion in liquid-rocket engines (LRE). This paper is focused on the injection performance of a small LRE-injector by employing the spray characteristic parameters made up of the velocity, Sauter mean diameter, and turbulence intensity. An experimental investigation is carried out with the aid of a dual-mode phase Doppler anemometry (DPDA) according to the injection pressure variation and along transverse axis, spatially. The Weber number and Reynolds number are used to characterize the atomization and turbulence nature of injector spray.

  • PDF

An Experimental Study of the Spray Characteristics for an Oxidizer-rich Preburner Injector (산화제 과잉 예연소기 인젝터의 분무 특성에 관한 연구)

  • So, Y.S.;Yang, J.H.;Han, Y.M.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • The spray characteristics of the oxidizer-rich preburner are investigated. This system is generally operated at an oxidizerfuel mixture ratio of 50. The spray quality and mixing performance are very important for safe combustion. To know the spray characteristics of the oxidizer-rich preburner, we have designed various swirl injectors and measured droplet velocity and size by the PDPA system. The flow discharge coefficient of the fuel orifice is $0.12{\sim}0.21$, oxidizer orifice discharge coefficient is $0.16{\sim}0.28$. From the spray visualization, fuel nozzle spray angle is $15^{\circ}{\sim}25^{\circ}$, oxidizer nozzle spray angle is $65^{\circ}{\sim}85^{\circ}$ and combined spray angle is reduced $2^{\circ}{\sim}5^{\circ}$ compared to the oxidizer nozzle only case. From the PDPA measurement, droplet SMD is $175\;{\mu}m$ at 50 mm and $190\;{\mu}m$ at 100 mm of variant 1 combined case. The number concentration measurement revealed the reason of the droplet diameter increasement with distance. That is due to drop coalescence results from collision of drops which is occurred in dense sprays at a long distance from nozzle orifice exit.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Experimental Investigation of Entrainment of Ambient Gases into Diesel Spray (디이젤 噴霧 周圍氣體의 엔트레인먼트에 관한 實驗的 硏究)

  • 하종률;김봉곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.534-540
    • /
    • 1988
  • A study on the mixing process of fuel with ambient gas is necessary to verify combustion process of a diesel engine, especially the mechanism of its ignition delay. In this study, a single shot of diesel spray was injected through either a constant pressure injection system and bypass type injection system. Measurements were made on the flow characteristics of ambient gas and its time history using a hot wire anemometer and a high speed camera. The gas flow direction was determined by a smoke tracer method. (1) The ambient gas of spray flows away at the stagnation part where static pressure value is positive and flows in at the penetration part of a negative value with the steady entrainment length of 0.7. (2) The steady entertainment velocity around the spray in creases from the nozzle tip to the downstream, has the maximum value at the mixing boundary part, and represents zero at the stagnation boundary part after which the stream flows reversely at the stagnation part.

A Fundamental Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 기초적 연구)

  • Jeong, Mi-Seon;Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2139-2144
    • /
    • 2003
  • In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. The objective of the present study is to investigate the supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jet.

  • PDF

Analysis on the In-cylinder Flow of HIMSEN 6H21/32 Engine (HIMSEN 6H21/32 엔진 실린더 내 유동해석)

  • Yoon, Wook-Hyun;Kim, Jin-Won;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.934-939
    • /
    • 2001
  • In computational study of the flow in piston engines and the flow through moving valves, the use of moving vertices is essential for modelling flows with moving boundaries. The positions of cell vertices in such cases must be allowed to vary with time. To simulate 3-dimensional port-valve and piston-cylinder of HIMSEN 6H21/32 engine, a commercially available code, STAR-CD, was used. Changes in mesh geometry was specified by PROSTAR commands.(i.e. the Change Grid operation in the EVENTS command module.) Control of the intake flow is expected to play an important role as designers seek to obtain better fuel spray characteristics, fuel mixing and mixture preparation, combustion performance, and emissions reductions to meet national standards. As a result of analysis, velocity fields indicate the presence of a structured flow comprised of one pair of counter-rotating vortices under the intake valve during the early induction process. These flow structures remain visible for most of the intake process. As the piston moves towards BDC, these vortices develops into a larger tumbling motion that dominates the flow structure.

  • PDF

Analysis of Flows in the Combustor with Recirculating Flow Regime (재순환영역을 가지는 연소기내의 연소유동해석)

  • 신동신;허남건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.22-31
    • /
    • 1997
  • We developed a general purpose program for the analysis of flows in the combustor with recirculating flow regime and simulated the flows. The program uses non-staggered grids based on finite volume method and the primitive variables are cartesian velocities. The combustion model is irreversible one step reaction with infinite chemistry The Favre averaged governing equations are considered and the clipped gaussian distribution is considered as a probability density function of the conserved scalar. We calculated turbulent diffusion flame with recirculating flow regime. Simulation shows two recirculating regions like experimental results. Velocity, turbulent kinetic energy, temperature and concentration distribution in simulation agree well with experimental data.

  • PDF

Low Pressure Firing Tests of 75-tonf-Class Channel Cooling Thrust Chamber (75톤급 채널냉각 연소기 저압연소시험)

  • Lim, Byoung-Jik;Han, Yeoung-Min;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.69-75
    • /
    • 2011
  • Firing tests have been carried out for a technology demonstration model of 75-tonf-class combustor which is to be used on the liquid rocket engine of a Korean space launch vehicle. Firing tests were done at 50% of the nominal flow rate because of incapability of the test facility and limit of the test bed strength. Through the low pressure firing tests of 75-tonf-class channel cooling thrust chamber, operability and stability at the ignition and combustion phases were confirmed. Additionally it was foreseen that the 75-tonf-class thrust chamber would satisfy the performance requirements.