• Title/Summary/Keyword: Combustion velocity

Search Result 894, Processing Time 0.032 seconds

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

Effects of Oxidizer Inlet Velocity on NO Emission characteristics of 0.2MW Oxy-Fuel Combustor (산화제 입구 속도에 따른 0.2MW 순산소 연소기의 NO 배출 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • Effects of oxidizer inlet velocity on NO emission characteristics of 0.2MW oxy-fuel combustor have been experimentally investigated. The NO formation process in the oxy-fuel combustion is extremely sensitive even for the small fraction of nitrogen in oxidizer. By increasing the oxidizer velocity, flame length is reduced due to the enhanced turbulent mixing. The increased oxidizer velocity also results in the decreased flame temperature through the elevated entrainment rate of the recirculated product and the corresponding NO emission is drastically decreased. Experimental results clearly indicate that the entrained product gases play a crucial role to decrease the temperature at the flame zone and the post flame zone where the thermal NO is mainly formed.

  • PDF

Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor (난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF

Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System (0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성)

  • RYU, HO-JUNG;KIM, JUNGHWAN;HWANG, BYUNG WOOK;NAM, HYUNGSEOK;LEE, DOYEON;JO, SUNG-HO;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

Numerical Study on Spontaneous Combustion in Coal Stockpile (저탄장에서의 석탄 자연발화에 관한 수치 해석적 연구)

  • HONG, JINPYO;KIM, JAEKWAN;CHI, JUNHWA;PARK, SUKWOON;SEO, DONGGYUN;LEE, JINHYANG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.721-728
    • /
    • 2017
  • In this work, an one-dimensional analysis on spontaneous combustion in a coal stockpile was conducted using a commercial software $gPROMS^{(R)}$ based on assumption suggested by Arioy and Akgun. According to them, it is assumed that there is temperature difference between the surface of coal particle and the gas surrounded around the particle, and it is also assumed that the velocity of the gas is constant and thus oxygen is fed to the stockpile with same velocity. The higher temperature zone is formed to the surface of the coal stockpile at the initial phase and it became deepen as time is taken. Finally it was found that the temperature difference between coal particle and the gas was calculated as $57^{\circ}C$ and spontaneous combustion have not been occurred during 6 months since coal was piled in the stock.

An experimental study on microstructure of doubled jet burner flame (이중분류버너화염의 미세구조에 관한 실험적 연구)

  • Jang, In-Gap;Choe, Gyeong-Min;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2337-2346
    • /
    • 1996
  • One of the most useful method for increasing combustion loading of premixed flame is to strengthen the turbulent intensity of unburned mixture. It produces an important information to a design of efficient combustion equipment that analysing microstructure of strong turbulence premixed flame. The flame structure and characteristics are depend on the turbulence of unburned mixture. Therefore, to strengthen the turbulent intensity of unburned mixture make flame scale small and accomplish efficient combustion. We measured the velocity of local flame front movements, local eddy radius and local reaction zone thickness quantitatively with increasing turbulent intensity of unburned mixture. We researched the microstructure of flame using ion currents that react sensitively in the reaction zone. Consequently, the velocity of local flame front movements is depend on the velocity of unburned mixture and local eddy scale is to be small with increasing turbulent intensity. But there is no change in local reaction zone thickness with turbulence.

Validation of the Turbulent Burning Velocity Based on Asymptotic Zone Conditional Transport in Turbulent Premixed Combustion (영역조건평균에 기초한 난류예혼합 화염 전파 속도식 유도 및 검증)

  • Lee, Dong-Kyu;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • An analytical expression for the turbulent burning velocity is derived from the asymptotic zone conditional transport equation at the leading edge. It is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. It was previously shown that the inverse scale is equal to four times the maximum flame surface density in the wrinkled flamelet regime [1]. The linear behavior between $U_T$ and u' shows deviation with the inverse scale decreasing due to the effect of a finite flamelet thickness at higher turbulent intensities. DNS results show that $U_T/S^0_{Lu}$ may be given as a function of two dimensionless parameters, $u'/S^0_{Lu}$ and $l_t/\delta_F$, which may be transformed into another relationship in terms of $u'/S^0_{Lu}$, and Ka. A larger $l_t/{\delta}_F$ or a smaller Ka leads to a smaller scale of wrinkling, hence a larger turbulent burning velocity in the limited range of $u'/S^0_{Lu}$. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS in both wrinkled and thickened-wrinkled flame regimes.

  • PDF

Combustion Test Results of Regenerative Cooling Combustor for 30 tonf-class Liquid Rocket Engine (30톤급 액체로켓엔진 연소기 재생냉각 연소시험 결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.133-137
    • /
    • 2008
  • Results of combustion tests performed for a regenerative cooling combustor of a 30 tonf-class liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. The combustion chamber is composed of mixing head, baffle injector, and regenerative cooling chamber. The hot firing tests were performed at design and off-design points. The test results show that the combustion characteristic velocity is in the range of 1738${\sim}$1751 m/sec and the specific impulse of the combustion chamber is in the range of 253${\sim}$270 sec. The peak of combustion characteristic velocity and specific impulse for this combustor is shown at mixture ratio of 2.35 and 2.5, respectively.

  • PDF

Liftoff Mechanisms in Hydrogen Turbulent Non-premixed Jet Flames (수소 난류확산화염에서의 부상 메커니즘에 대한 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.2
    • /
    • pp.26-33
    • /
    • 2007
  • To reveal the newly found liftoff height behavior of hydrogen jet, we have experimentally studied the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition. The objectives of the present research are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The velocity of hydrogen was varied from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As results, it has been found that the stabilization of lifted hydrogen diffusion flames is related with a turbulent intensity, which means that combustion occurs at the point where the local flow velocity is balanced with the turbulent flame propagation velocity.

  • PDF