• Title/Summary/Keyword: Combustion system

Search Result 2,154, Processing Time 0.032 seconds

Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수슬러지 및 우드펠렛 혼소에 관한 연소 특성 분석 및 비교)

  • Lee, Youngjae;Kim, Jongmin;Kim, Donghee;Lee, Yongwoon
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • The bubbling fluidized bed (BFB) reactor with a diameter of 0.1 m and a height of 1.2 m was used for experimental study of co-firing and emission characteristics fueled by sewage sludge (SS) and wood pellet (WP). The facility consists of a fluidized bed reactor, feeding system, cyclone, condenser and gas analyzer, The mean particle diameter and minimum fluidization velocity are $460{\mu}m$ and $0.21ms^{-1}$ respectively. SS produced from Korea and WP from Canada were examined. The various mixing ratios of WP were 20, 50, and 80% based on HHV. The equivalence ratio of 1.65, reactor temperature of $800^{\circ}C$, air flow rate of $100Lmin^{-1}$, and fluidization number of 4 were fixed in the BFB experiment. In TGA, the range of combustion temperature of SS was wider than that of WP. It represents that the combustibility of WP is higher than that of SS. The BFB reactor temperature was maintained between 800 and $900^{\circ}C$. CO emission of SS was high because of lower combustibility. $NO_X$ and $SO_X$ formation of SS were higher than that of WP since high nitrogen and sulfur contents of SS. CO, $NO_X$, and $SO_X$ formation were suppressed as the mixing ratio of WP was increased. The slagging and fouling tendencies show high in all test conditions.

Preparation and Optoelectric Characteristics of Low Power Consumption Type AC Powder EL Devices with Dielectrics and Rear Contact (유전재료와 후면전극에 따른 저전력 소비형 AC Powder EL 소자 제조 및 광전기적 특성)

  • Lee, Kang-Ryeol;Park, Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.120-125
    • /
    • 2002
  • AC powder EL devices were fabricated by screen printing method with the dielectric materials in insulating layer and the electrical resistivity of rear electrode. Brightness and current density were measured at voltage range of 50∼300 $V_{rms}$ to estimate optoelectrical properties of AC powder EL devices, respectively. Frequency generator was used as system producing frequency and voltage of a sine wave. Brightness and current density were measured by luminometer and multimeter. Also, dielectric constant for dielectric layer was measured by impedance analyser after preparing thick film. Dielectric constant was improved with amount of $TiO_2$ to $BaTiO_3$ powder. By applying such a process to dielectric layer of low cost AC powder EL device, brightness was improved to 50 cd/$m^2$ at similar current density. Dielectric constant $BaTiO_3$ powder by solution combustion process is better than commercial $BaTiO_3$ powder. By applying to that of low power consumption AC powder EL device, brightness was improved to 85 cd/$m^2$. Brightness of AC powder EL device was relatively decreased by control of electrical resistivity of rear electrode, current density was also decreased.

Cognitive Perception of an Eco-friendly Public Transportation : Using Principal Component Analysis (친환경 대중교통 수단에 대한 인지적 특성 비교 분석 : 주성분분석을 활용하여)

  • Kwon, Yeongmin;Kim, Suji;Byun, Jihye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • The existing transportation system, which is based on internal combustion engines, is rapidly being converted to electrification. Thus, eco-friendly public transportation with high transportation efficiency will continue to spread throughout the market in the near future. The purpose of this study is to compare and analyze the cognitive characteristics of passengers redgarding the technical and social factors of various public transportation means to help a successful introduction of eco-friendly public transit. Through a survey questionnaire (N=485), seven factors of seven transportation modes were evaluated and analyzed using principal component analysis. As a result, it is confirmed that potential passengers have high expectations for the eco-friendliness and city image of the eco-friendly buses. Also, it is confirmed that eco-friendly buses are superior in cleanliness and ride comfort than diesel buses. Given the study's results, this study identifies the cognitive characteristics of passengers regarding eco-friendly public transportation. We hope that these results will be used as basic information for image positioning and improved service with the use of eco-friendly transportation.

Modeling of heat efficiency of hot stove based on neural network using feature extraction (특성 추출과 신경회로망을 이용한 열 풍로 열효율에 대한 모델링)

  • Min Kwang Gi;Choi Tae Hwa;Han Chong Hun;Chang Kun Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.60-66
    • /
    • 1998
  • The hot stove system is a process that is continuously and constantly generating the hot combustion air required for the blast furnace. The hot stove process is considered as a main energy consumption process because it consumes about $20\%$ of the total energy in steel making works. So, many researchers have interested in the improvement of the heat efficiency of the hot stove to reduce the energy consumption. But they have difficulties in improving the heat efficiency of the hot stove because there is no precise information on heat transformation occurring during the heating period. In order to model the relationship between the operating conditions and heat efficiencies, we propose a neural network using feature extraction as one of experimental modeling methods. In order to show the performance of the model, we compare it with Partial Least Square (PLS) method. Both methods have similarities in using the dimension reduction technique. And then we present the simulation results on the prediction of the heat efficiency of the hot stove.

  • PDF

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

A Study on the Effect of Sulfur Content in Fuel Oil on the Emission of Air Pollutants According to Operating Conditions of Small Ship Engines (선박용 소형 엔진에서 연료유 내 황 함유량이 운전 조건에 따라 대기오염물질 배출에 미치는 영향에 관한 연구)

  • Lee, Kyeong-yeol;Rho, Beom-seok;Lee, Won-Ju;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.834-840
    • /
    • 2018
  • In this study, the characteristics of air pollutant emissions from ships' engines have been investigated by conducting E2 and E3 cycle mode tests. A engine 360Ps (Doosan L126TIH engine) and 400kW dynamometer Horiba-Schenck were utilized for engine tests. The FTIR analyzer and SPC were used to measure exhaust gas (NOx, SOx etc.) and PM (particulate matter), respectively. The results showed that the emissions of THC and CO produced from engine were increased with the increase of sulfur content in fuel oils at E2 and E3 cycle modes. The kinetic viscosity of the fuel increased as the sulfur content of the fuel increased, thereby the specific fuel oil consumption (SFC) of the engine improved. This result is considered to be due to improved combustion conditions due to increased average diameters of sprayed particles and due to increased kinetic viscosity under constant fuel injection pressure in this study. In the case of NOx emission, this study showed no significant change in amount of sulfur content.

Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature (로켓 노즐목 소재 C/SiC 복합재 고온 파괴 특성)

  • Yoon, Dong Hyun;Lee, Jeong Won;Kim, Jae Hoon;Sihn, Ihn Cheol;Lim, Byung Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2016
  • In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor (합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정)

  • Ryu, Ho-Jung;Kim, Ji-Woong;Jo, Wan-Kuen;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.506-514
    • /
    • 2007
  • To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

Effect of Daisdzein on the Benzo(k)fluoranthene Regulated CYP1B1 Gene Expression (Daisdzein이 Benzo(k)fluoranthene에 의한 CYP1B1 유전자조절 작용에 미치는 영향)

  • Seo, Mi-Jeong;Kim, Yeo-Woon;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.4
    • /
    • pp.198-205
    • /
    • 2004
  • Cytochrome P4501B1(CYP1B1) is known to be inducible by xenobiotic compounds such as policyclic aromatic hydrocarbon(PAH) and dioxins such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). And these induction of CYP1B1 is also regulated by many categories of chemicals. In order to investigate the effects of several chemicals on CYP1B1 gene expression in Hepa-I and MCF-7 cells, 5' flanking DNA of human CYP1B1 was cloned into pGL3 basic vector containing luciferase gene, and then transfected into these cells. After treatment of chemicals, the luciferase activity was measured. CYP1B1 enzyme metabolize PAHs and estradiol. CYP1B1 metabolize estradiol to 4-hydrozyestradiol that is considered as carcinogenic metabolite. Recent industrialized industrialized society, human has been widely been exposed to widespread environmental contaminants such as PAHs(polycyclic aromatic hydrocarbon) that are originated from the imcomplete combustion of hydrocarbons. PAHs are known to be ligands of the AhR(aryl hydrocarbon receptor). Induction of cytochrome P4501B1(CYP1B1) in cell culture is widely used as a biomarker for PAHs. Therefore we have studied the effect of PAHs in the human breast cancer cells MCF-7 to evaluate bioactivity of PAHs. We have used the United State of America EPA selected 13 different PAHs, PAHs mixtures and extracts from environmental samples to evaluate the bioassay system. We examined effects of PAHs on the CYP1B1-luciferase reporter gene and CYP1B1 mRNA level. Benzo(k)fluoranthene and dibenzo(a, h)anthracene showed strong response to CYP1B1 promoter activity stimulation, and also CYP1B1 mRNAs increase in MCF-7 cells in a concentration-dependent manner. RT-PCR analysis indicated that PAHs significantly up-regulate the level of CYP1B1 mRNA. Some flavonoids such as genistein, daidzein, chrysin, naringenin and morin were also investigeted. These flavonoids decreased B(k)F infuced luciferase activity at low concentration. But, these flavonoids exhibited stimulatory effect at high concentration.

  • PDF