• Title/Summary/Keyword: Combustion system

Search Result 2,156, Processing Time 0.039 seconds

Experimental Study on Smoke Production and Smoke Generation in Thermoplastic Resins Based on PP, PMMA, and PVC (열가소성 수지(PP, PMMA, PVC)의 연기생성 및 발생에 관한 실험적 연구)

  • Hwang, Euy-Hong;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Due to the complexity and large size of buildings, plastic resin is widely used as a building material. Accordingly, the occurrence of fires caused by plastics is increasing. Due to the nature of plastic resin fires, the amount of damage to properties and human life caused by combustion products such as smoke are large, and these damages are related to smoke production and smoke generation. Therefore, this study reviews smoke measurement methods and laws on domestic buildings and fire services. Experiments were conducted based on three smoke-related test standards (ISO 5660-1, ISO 12136, ASTM E 662). The experiment results indicate a total smoke production and generation by PP, PVC, and PMMA of 43.27, 32.83, and 12.33 ㎡, and 27.855, 9.599, and 6.975 g, respectively.

Comparison of Macroscopic Spray Characteristics of Dimethyl Ether with Diesel (Dimethyl Ether와 디젤의 거시적 분무 특성 비교)

  • Yu, J.;Lee, J. K.;Bae, C. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • Dimethyl ether (DM) is one of the most attractive alternative fuel far compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-holes sac type injector (hole diameter 0.168 ㎜/hole) was performed in a high pressure chamber pressurized with nitrogen gas. A CCD camera was employed to capture time series of spray images followed by spray cone angles and penetrations of DME were characterized and compared with those of diesel. Under atmospheric pressure condition, regardless of injection pressure, spray cone angles of the DME were wider than those of diesel and penetrations were shorter due to flash boiling effect. Tip of the DME spray was farmed in mushroom like shape at atmospheric chamber pressure but it was disappeared in higher chamber pressure. On the contrary, spray characteristics of the DME became similar to that of diesel under 3MPa of chamber pressure. Hole-to-hole variation of the DME spray was lower than that of diesel in both atmospheric and 3MPa chamber pressures. At 25MPa and 40MPa of DME injection pressures, regardless of chamber pressure, intermittent DME spray was observed. It was thought that vapor lock inside the injector was generated under the two injection pressures.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

A Study on the Dynamic Charateristics for Control of Gas-Fueled industrial Gas Boiler(I) (산業용 GAS 보일러의 動特性에 관한 硏究 (I))

  • 임종한;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.965-973
    • /
    • 1992
  • Boilers, which are considered to be one of the basic equipment in industry, consume large potion of nation's petroleum and their demand is growing everyday. In recent, the technology improvement in production of high efficiency boilers and their effective utilization is needed for design of boiler which steam condition is the large capacity of high temperature and high pressure. It is necessary that boiler control system be studied for high efficiency, high reliability and smooth operation. The control of drum pressure and water level particularly becomes an important task for greater accuracy with the avail ability of boiler operation. To achieve this aim, dynamic analysis of a boiler is accomplished by choosing a boiler as a model. Transfer function thus obtained is made a comparison of measurement with reckoning to technical design data. The results of comparison makes it possible to verify thermodynamical analysis on the dynamic behavior of the overall system.

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

An Experimental Study on Engine Performance of LPG/Gasoline Bi-Fuel (LPG/가솔린 Bi-Fuel 엔진성능에 관한 실험적 고찰)

  • Jun, Bong-Jun;Park, Myung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1433-1438
    • /
    • 2009
  • The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000) and the ignition timing advance($5^{\circ}$,$10^{\circ}$,$15^{\circ}$,$20^{\circ}$) As the result, between 1500rpm and 2000rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$was smaller value. Also, the heat release rate at 1500rpm was increased but it was lower around $20^{\circ}$at 2000rpm.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

Vaporization and condensation of metallic species in hazardous waste incineration (폐기물 소각시 생성되는 유해 중금속물질의 증발.응축현상에 대한 연구)

  • Song, Yu-Seok;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1983-1993
    • /
    • 1996
  • For selected (pure and compound) metallic species effects of saturation ratio, temperature, particle size and number density on condensation mechanisms are first reviewed. The tendencies for vaporization and condensation differ between metallic species because of the significant differences in their saturation pressures. Then particle pressure of a metal vapor species at incineration temperature is calculated by simplifying waste as a compound of methane, chlorine and small amounts of metals and assuming a thermodynamic equilibrium state. Next the condition is assessed for which supersaturation of combustion gases by the species above the critical level for homogeneous condensation may occur, when the gases contain a large number of pre-existing particles such as entrained ashes. Regardless of the presence of chlorine in the waste, the homogeneous condensation of PbO vapors may occur, depending on number density of the pre-existing particles. However, when chlorine exists in the waste, the homogeneous condensation of PbCl$_2$vapors does not occur, which is similar to the case of Cd and Hg vapors. Thus these highly volatile species, PbCl$_2$, Cd, and Hg, may emit to atmosphere as vapor phase. In general, for reducing the emission of hazardous metallic species into the atmosphere, the number density of pre-existing particles has to be increased. For fixed particle number density, the temperature drop rate must be kept in low if the temperature at which a condensable vapor species emits from a incineration system is fixed, while the temperature drop rate must be kept in high if the residence time for which a condensable species stays in the system is fixed.

A Study on Improvenment of Livingroom Smoke-control System using the FDS (화재 시뮬레이션(FDS)을 이용한 거실제연설비 개선에 관한 연구)

  • Kim, Mi-Seon;Baek, Eun-Seon
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.26-34
    • /
    • 2017
  • The purpose of this study is to identify and improve the performance of the adjacent room ventilation system in living room ventilation facilities, and compare and analyze the smoke control regulations of the NFPA code and the national fire safety standard (NFSC). The analysis method was fire dynamics simulation (FDS) and was used to analyze the, variations of the air supply amount, width of the boundary, change in indoor combustion and wind velocity of the incoming air. It was found to be advantageous to secure the clean layer when the amount of air supplied is less than the amount of discharged air in the fire room. However, in the supply room, it is more effective to secure the clean layer when the amount of supplied air is larger than the amount of discharged air, as a longer boundary width gives rise to better performance. In addition, it is necessary to consider the amount of air supplied and discharged as a function of the kind of flammable material. Moreover, decreasing the air inlet wind speed and amount of incoming air is advantageous for securing the clean layer of the fire room.

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.