• Title/Summary/Keyword: Combustion product

Search Result 235, Processing Time 0.026 seconds

CO2/CH4 Separation in Metal-organic Frameworks: Flexibility or Open Metal Sites? (금속-유기 골격체를 이용한 CO2/CH4 분리: 플렉서블 효과와 강한 흡착 사이트 비교 연구)

  • Jung, Minji;Oh, Hyunchul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.136-141
    • /
    • 2018
  • Carbon dioxide ($CO_2$) exists not only as a component of natural gas, biogas, and landfill gas, but also as a major combustion product of fossil fuels which leads to a major contributor to greenhouse gases. Hence it is essential to reduce or eliminate carbon dioxide ($CO_2$) in order to obtain high fuel efficiency of internal combustion engine, to prevent corrosion of gas transportation system, and to cope with climate change preemptively. In recent years, there has been a growing interest in not only conventional membrane-based separation but also new adsorbent-based separation technology. Particularly, in the case of metal-organic frameworks (MOFs), it has been received tremendous attentions due to its unique properties (eg : flexibility, gate effect or strong binding site such as open metal sites) which are different from those of typical porous adsorbents. Therefore, in this study, stereotype of two MOFs have been selected as its flexible MOFs (MIL-53) representative and numerous open metal sites MOFs (MOF-74) representative, and compared each other for $CO_2/CH_4$ separation performance. Furthermore, varying and changeable separation performance conditions depending on the temperature, pressure or samples' unique properties are discussed.

A Study on Flame Retardant Performance of Vertical Blind and Roll Screen (버티칼 브라인드와 롤 스크린의 방염성능 유지에 관한 연구)

  • Jeong, Hyun Gyu;Cho, Woncheol;Lee, Tae Sik
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • This study focuses on two points. First, I have examined the difference on combustion between flame-retardant and non flame-retardant products including vertical blinds and roll screens that are widely used as a substitute for fabric curtains. The second point is to see how long flame-retardant goods can be durable, that is, flame retardant durability after washing in liquid. the experiment on the flame-retardant ability before and after washing of vertical blinds and roll screens that have been used for a long time in fire protection construct. Comparing and analyzing domestic and foreign laws on flame-retardant after the experiment on durability of these products. I aim to draw necessity for increased application of internal laws and regulations on flame-retardant and show how to improve the point at issue. According to the result, clear differences in performance and safety were observed between flame-retardant and non flame-retardant products. flame-retardant materials can prevent things from fire spread without igniting but melting when they've met flame and burnt, In contrast, non flame-retardant material for experiment which size is 120cm long takes less than 3 minutes only to be completely destroyed by fire. However, it was expected for flame-retardant durability of flame-retardant blinds which are not washable to decrease flame-retardant durability after being washed with water, there was no sharp difference. so it is demonstrated that flame-retardant blinds can keep flame-retardant durability. accordingly through the strict course of product we are concerned about keeping durability.

  • PDF

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

High Thermoluminescence Properties of Dy+Ce, and Dy+Na Co-Doped MgB4O7 for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy+Ce 및 Dy+Na 이중 도핑된 MgB4O7의 높은 열발광 특성)

  • Jinu Park;Nakyung Kim;Jiwoon Choi;Youngseung Choi;Sanghyuk Ryu;Sung-Jin Yang;Duck Hyeong Jung;Byungha Shin
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • 'Tracers' are bullets that emit light at the backside so that the shooter can see the trajectory of their flight. These light-emitting bullets allow snipers to hit targets faster and more accurately. Conventional tracers are all combustion type which use the heat generated upon ignition. However, the conventional tracer has a fire risk at the impact site due to the residual flame and has a by-product that can contaminate the inside of the gun and lead to firearm failure. To resolve these problems, it is necessary to develop non-combustion-type tracers that can convert heat to luminance, so-called 'thermoluminescence (TL)'. Here, we highly improve the thermoluminescence properties of MgB4O7 through co-doping of Dy3++Ce3+ and Dy3++Na+. The presence of doping materials (Dy3+, Ce3+, Na+) was confirmed by XPS (X-ray photoelectron spectroscopy). The as-synthesized co-doped MgB4O7 was irradiated with a specific radiation dose and heated to 500 ℃under dark conditions. Different thermoluminescence characteristics were exhibited depending on the type or amounts of doping elements, and the highest luminance of 370 cd/m2 was obtained when Dy 10 % and Na 5 % were co-doped.

International Comparison of Decoupling of Greenhouse Gas Emissions in the Steel Industry (철강산업의 온실가스 배출 탈동조화 국제비교)

  • Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.31 no.1
    • /
    • pp.113-139
    • /
    • 2022
  • The iron and steel industry is a manufacturing industry with the largest greenhouse gases emissions and has a great ripple effect on the national economy as a core material industry. This study internationally compared the decoupling patterns of greenhouse gases emissions in the iron and steel industry from 1990 to 2019, focusing on Korea, Japan, and Germany. In particular, unlike previous studies that considered only fuel combustion emissions, this study considered all fuel combustion emissions, industrial process emissions, and indirect emissions from the use of electricity and heat. As a result of the analysis, Korea is interpreted as expansive coupling, Japan as decoupling, and Germany as unclear. Therefore, the decoupling path that the Korean iron and steel industry should take should not be in Germany, but in the form of seeking a decoupling method similar to Japan or more effective than Japan. In addition, this study considered the characteristics of the iron and steel industry as much as possible and presented the causes of the decoupling analysis results and implications for the Korean iron and steel industry through comparison with Japan and Germany. In particular, four factors were suggested as factors which has promoted decoupling in Japan: high value-added of Japanese iron and steel products, development of energy efficiency technology in the Japanese iron and steel industry, strategic M&A of the Japanese iron and steel industry, and maintaining competitiveness according to the closed distribution structure of Japanese iron and steel products. The Korean iron and steel industry should also use the case of Japan as a benchmark to further increase added value through quality uprade and product diversification of iron and steel products, while at the same time making efforts to fundamentally reduce greenhouse gas emissions through the development of new technologies.

Effect of Propellant-Supply Pressure on Liquid Rocket Engine Performance (추진제 공급압력이 액체로켓엔진의 성능에 미치는 영향)

  • Cho, Won-Kook;Park, Soon-Young;Nam, Chang-Ho;Kim, Chul-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.443-448
    • /
    • 2010
  • In this paper, the changes in performance parameters, e.g., the combustor pressure, turbine power, engine mixture ratio, temperature of gas generator, and product gas, of a liquid rocket engine employing gas generator cycle with the variations in propellant-supply pressure have been described. Engine performance is numerically calculated using the 13 major system-level variables of the rocket engine. The combustor pressure and turbine power increase with an increase in the oxidizer-supply pressure and decrease with an increase in fuel-supply pressure. The lower mixture ratio of gas generator for increased fuel mass flow rate decreases the gas generator gas temperature and deteriorates the gas material properties as the turbine working fluid. The turbine power decreases with an increase in fuel-supply pressure; this results in a decrease in the main-combustor pressure, which is directly proportional to engine thrust.

Molecular Level Understanding of Chemical Erosion on Graphite Surface using Molecular Dynamics Simulations (분자동역학을 이용한 그래파이트 표면에서의 화학적 삭마현상에 관한 분자 수준의 이해)

  • Murugesan, Ramki;Park, Gyoung Lark;Levitas, Valery I.;Yang, Heesung;Park, Jae Hyun;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.54-63
    • /
    • 2015
  • We present a microscopic understanding of the chemical erosion due to combustion product on the nozzle throat using molecular dynamics simulations. The present erosion process consists of molecule-addition step and equilibrium step. First, either $CO_2$ or $H_2O$ are introduced into the system with high velocity to provoke the collision with graphite surface. Then, the equilibrium simulation is followed. The collision-included dissociation and its influence on the erosion is emphasized and the present molecular observations are compared with the macroscopic chemical reaction model.

Numerical and Experimental Study on the Increase of Removal Efficiency of SO2 in a Laboratory Scale Electrostatic Spray Drying Absorber (실험실 규모 정전기 분무형 반건식 세정기의 SO2 제거효율 향상에 대한 계산 및 실험적 연구)

  • Byun, Young-Cheol;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1111-1120
    • /
    • 1998
  • Spray Drying Absorber(SDA) system, where the combustion product gas is mixed with atomized limestone-slurry droplets and then the chemical reaction of $SO_2$ with alkaline components of the liquid droplets forms sulfates, has been widely used to eliminate $SO_2$ gas from coal fired power plants and waste incinerators. Liquid atomization is necessary because it can maximize the reaction efficiency by increasing the total surface area and dispersion angle of the alkaline components. First, numerical calculations using FLUENT are carried out to investigate $SO_2$ concentration distribution and thus to calculate $SO_2$ removal efficiency. So to attain the optimized spray conditions, then an electrostatic spraying system is set up and spray visualization is performed to show the effect of an electric field on overall droplet size. Next, the effect of an electric field on the concentrations of $SO_2$ is experimentally examined. Field strength is varied from -10 kV to 10 kV and configurations of conduction charging and induction charging are utilized. Consequently, the electrostatic removal efficiency of 501 increases about 30% with the applied voltage of ${\pm}10kV$ but is independent of polarity of the applied voltage. It Is also found that the conduction charging configuration results in higher efficiency of $SO_2$ removal that the induction charging configuration. Finally, the effect of slurry temperature on $SO_2$ removal is studied. The temperature influences on the electrostatic removal efficiency of $SO_2$.

A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster (도로터널내 화재 발생시 매연 제거를 위한 모델 해석)

  • 윤성욱;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

Fabrication of $\textrm{ZrB}_2$ by SHS Process and Reaction-bonded $\textrm{ZrB}_2$-ZrC Composite (SHS법에 의한 $\textrm{ZrB}_2$ 합성과 반응소결된 $\textrm{ZrB}_2$-ZrC계 복합체의 제조)

  • Lee, Yun-Bok;Kim, Jeong-Seop;Kim, Sang-Bae;Park, Hong-Chae;O, Gi-Dong
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • $ZrB _2$ was prepared from a mixture of $ZrO_2$, $B_2$$O_3$and Mg by SHS method. The combustion products were successfully obtained from a mixture of $Zro_2$:$B_2$$O_3$:Mg=1:2.0:8.5(molar ratio). MgO, by-product, was removed to 92.7% by leaching with 1M HCl solution at 9$0^{\circ}C$, for 10 hours. After leaching, the mean particle size of the resultant $ZrB_2$powders was 23.6$\mu\textrm{m}$. $ZrB_2$-ZrC composite was suitably obtained from a mixture of C/Zr=1.2 molar ratio by arc-melting method. The density of arc-melted specimen increased by adding excess zirconium content(x). The bulk density was 6.17g/㎤ for x=0, and 6.37g/㎤ x=4. Vickers hardness of arc-melted specimen was /$1290kg\textrm{mm}^2$ for x=0, and fracture toughness increased to 4.2MPa.m\ulcornerforx=4 compared to 3.4MPa.m\ulcornerfor x=0.

  • PDF