DOI QR코드

DOI QR Code

Effect of Propellant-Supply Pressure on Liquid Rocket Engine Performance

추진제 공급압력이 액체로켓엔진의 성능에 미치는 영향

  • 조원국 (한국항공우주연구원 발사체엔진팀) ;
  • 박순영 (한국항공우주연구원 발사체엔진팀) ;
  • 남창호 (한국항공우주연구원 발사체엔진팀) ;
  • 김철웅 (한국항공우주연구원 발사체엔진팀)
  • Published : 2010.04.01

Abstract

In this paper, the changes in performance parameters, e.g., the combustor pressure, turbine power, engine mixture ratio, temperature of gas generator, and product gas, of a liquid rocket engine employing gas generator cycle with the variations in propellant-supply pressure have been described. Engine performance is numerically calculated using the 13 major system-level variables of the rocket engine. The combustor pressure and turbine power increase with an increase in the oxidizer-supply pressure and decrease with an increase in fuel-supply pressure. The lower mixture ratio of gas generator for increased fuel mass flow rate decreases the gas generator gas temperature and deteriorates the gas material properties as the turbine working fluid. The turbine power decreases with an increase in fuel-supply pressure; this results in a decrease in the main-combustor pressure, which is directly proportional to engine thrust.

가스발생기 사이클 액체로켓엔진에서 추진제의 공급압력 변화에 대한 성능 즉, 연소압, 터빈 파워, 엔진 혼합비, 가스발생기 연소가스의 온도 변화를 제시하였다. 로켓엔진의 주요 13개 시스템 레벨 변수를 이용하여 엔진 성능을 수치적으로 계산한다. 산화제 공급압이 증가하면 연소압과 터빈 파워는 증가하며 연료 공급압이 증가하면 연소압과 터빈 파워가 감소한다. 연료 유량 증가에 따라 감소된 가스 발생기의 혼합비는 연소가스 온도를 감소시키며 터빈 구동매질로서의 연소가스 물성을 저하시킨다. 연료 유량 증가에 따라 감소된 터빈 파워는 엔진 추력에 직접 영향을 미치는 주연소기의 연소압을 감소 시킨다.

Keywords

References

  1. Nam, C.H., Park, S.Y., Kim, S.H. and Seol, W.S., 2007, "Performance Dispersion of Gas Generator Cycle Liquid Propellant Rocket Engine by Inlet Conditions and the Influence from Pump Characteristics," Proceeding of the 2007 KSAS Fall Conference, pp.1477-1480
  2. Nam, C.H., Cho, W.K. and Seol, W.S., 2006, "Performance Dispersion Analysis and Applications of Gas Generator Cycle Liquid Rocket Engine," 2006 KSPE Fall Conference Proceeding, pp.191-195.
  3. Park, S. and Cho, W.K., 2008, "Program Development for the Mode Calculation of Gas-Generator Cycle Liquid Rocket Engine," 2008 KSPE Fall conference, pp. 366-370.
  4. McBride, B.J. and Gordon, S., 1996, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication 1311.
  5. Dixon, S.L. and Eng, B., 1998, Fluid Mechanics, Thermodynamics of Turbomachinery 3rd Ed., Butterworth-Heinemann, p. 8.
  6. Seo, S.H., Han, Y.M., Kim, S.-K. and Choi, H.S., 2006, "Study on Combustion Gas Properties of a Fuel-Rich Gas Generator," 2006 KSPE Spring conference, pp.118-122.
  7. Kim, C.-W., Park, S.-Y. and Nam, C.-H., 2009, KARI-RET-TM-2009-009 Operating Mode Analysis of Turbo Pump-Gas Generator-Combustor System
  8. Cho, W.K, Nam, C.H., Park, S.Y. and Kim, C.W., 2008, "Sensitivity Analysis of Liquid Rocket Engine Performance," Proceedings of the KSME 2008 Fall Annual Meeting, pp. 3159-3162.