• Title/Summary/Keyword: Combustion flames

Search Result 642, Processing Time 0.027 seconds

A Numerical Analysis of Flame Liftoff Height and Structure with the Variation of Velocity Profiles at the Nozzle Exit (연료노즐 출구에서의 속도 형상에 따른 부상화염 높이 및 화염구조에 관한 수치해석 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • A numerical analysis is achieved to elucidate the behavior of lifted flames and characteristics of flow near flame zone according to the exit velocity of triple flame, Poiseuille and uniform distribution. For the cases of Poiseuille and uniform nozzle exit velocity, we reviewed previous results with the present numerical results and investigated characteristics of the flame structure near the flame zone comparing with liftoff height generalized by momentum flux. In addition, a close inquiry into the combustion flow characteristics near flame zone was made with the characteristics of velocity, pressure, temperature and chemical reaction. From nozzle to flame zone, center line velocity profile traced well with the velocity profile of typical cold jet flow, but very near the flame zone, this study examined phenomenon that flow velocity decreases very quickly before the flame zone and then increases very quickly after the flame zone. Because flame zone acts as a barrier at the flow region which is before the flame zone and accelerate the flow velocity when it pass through the flame zone. This phenomenon was not clarified previous cold jet flow.

  • PDF

Experimental and Computational Studies on Particle Behavior in High Temperature Gas with the Various Temperatures of a Solid Wall (고체의 벽면온도에 따른 고온가스 내의 입자거동에 대한 실험 및 수치해석 연구)

  • Choi, Jae-Hyuk;Lee, Ki-Young;Yoon, Doo-Ho;Yoon, Seok-Hun;Choi, Hyun-Kue;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.403-412
    • /
    • 2006
  • The effect of a wall temperature on the soot deposition process from a diffusion flame to a solid wall was investigated in a microgravity environment to attain in-situ observations of the process. The fuel for the flames was an ethylene ($C_2H_4$). The surrounding oxygen concentration was 35% with surrounding air temperatures of $T_a=600K$. In the study, three different wall temperatures. $T_w$=300, 600, 800K, were selected as major test conditions. Laser extinction was adopted to determine the soot volume fraction distribution between the flame and burner wall. The experimental results showed that the maximum soot volume fractions at $T_w$=300, 800 K were $8.8{\times}10^{-6},\;9.2{\times}10^{-6}$, respectively. However, amount of soot deposition on wall surface was decreased because of lower temperature gradient near the wall with increasing wall temperature. A numerical simulation was also performed to understand the motion of soot particles in the flame and the characteristics of the soot deposition to the wall. The results from the numerical simulation successfully predicted the differences in the motion of soot particles by different wall temperature near the burner surface and are in good agreement with observed soot behavior that is, the 'soot line', in microgravity.

Basic Experimental Study of the Edge-Flame Intensity Variation at High Temperature and with Small Fuel-Concentration Gradient (고온 미소농도구배 조건에서의 에지화염 강도 변화에 관한 실험적 기초 연구)

  • Lee, Min-Jung;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.633-640
    • /
    • 2011
  • In this study, the stabilization of an edge flame and the intensity variation of a diffusion branch were investigated using a multi-slot combustor under conditions of high temperature and small fuel-concentration gradient (FCG). The combustor consists of three narrow channels: a quartz channel and two side-heating combustors. For the accuracy of this experimental study, quantitative analysis was carried out for each boundary condition. Stable edge flames could be observed under high-temperature conditions by controlling the FCG and fuel dilution ratio. Moreover, it was found that the intensity of the diffusion flame was increased by increasing the temperature of the mixture. On the contrary, the intensity of the diffusion flame was decreased by increasing the dilution ratio. It was also found that a propane flame is more sensitively affected by these experimental parameters than a methane flame.

Characteristics of Non-premixed Synthetic Natural Gas-Air Flame with Variation in Fuel Compositions (합성천연가스의 조성변화에 따른 확산화염 연소특성)

  • Oh, Jeongseog;Dong, Sangeun;Yang, Jebok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2013
  • The combustion characteristics with variations in synthetic natural gas (SNG) compositions were studied in a lab-scale combustor. The objective of the current study is to investigate the flame stabilization, flame structure, and spectrometry in a non-premixed SNG flame with varying fuel compositions. For the analysis of light emission in SNG flames, we used a spectrometer. As experimental conditions, the fuel jet velocity at the nozzle exit $u_F$ was varied from 5 to 40 m/s and the coaxial air velocity $u_A$ was varies from 0 to 0.43 m/s. The experiments showed that the flame stability increased with the hydrogen component in SNG.

Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process (비정상 소화 과정에서의 화염 온도 및 OH 라디칼의 변화)

  • Lee, Uen-Do;Lee, Ki-Ho;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1557-1566
    • /
    • 2004
  • A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.

Effect of AC Electric Fields on Counterflow Diffusion Flame of Methane (메탄의 대향류 확산화염에 대한 AC 전기장의 영향)

  • Choi, Byung-Chul;Kim, Hyung-Kuk;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.849-855
    • /
    • 2012
  • The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force.

A Numerical Study on Sensitivity of Acoustic Response to Pressure Oscillations in Liquid Rocket Engine (압력진동에 대한 액체 로켓엔진의 음향 응답의 민감도에 관한 수치적 연구)

  • Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.79-87
    • /
    • 2002
  • Acoustic responses to pressure oscillations in axisymmetric combustion chamber are numerically investigated to examine the qualitative trend of acoustic instability in liquid rocket engine. Chamber operating condition and excitation frequency of oscillating pressure are selected as exciting parameters of acoustic instability. Artificial perturbation is simulated by total-pressure oscillation with sine wave at chamber inlet. Many approximations and simplifications are introduced without losing the essence of acoustic pressure response. First, steady-state solution for each operating condition is obtained and next, transient analysis is conducted. Depending on operating condition and excitation frequency, the distinct response characteristics are brought. Weak-strength flames and high-frequency excitation tend to cause sensitive acoustic pressure response leading to unstable pressure field. These results are analyzed based on the correlation with acoustic pressure responses from the previous works adopting laminar flamelet model.

Large Eddy Simulation of Swirling Premixed Flames in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서 선회 예혼합화염의 대와동모사(LES))

  • 황철홍;이창언
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.79-88
    • /
    • 2006
  • In the present paper, the swirl flow structure and flame characteristics of turbulent premixed combustion in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. When inlet swirl number is increased, the distinct flow structures, such as the shapes of corner recirculation and center toroidal recirculation zone, are observed and the flame length is shorted gradually. Also, the phenomena of flashback are identified at strong swirl intensity. In order to get the accurate description of unsteady flame behavior, the predictive ability of the acoustic wave in a combustor is primarily evaluated. It is found that the vortex generated near the edge of step plays an important role in the flame fluctuation. Finally it is examined systematically that the flame and heat release fluctuation are coupled strongly to the vortex shedding generated by swirl flow and acoustic wave propagation from the analysis of flame-vortex interaction.

Local Concentration and Flame Temperature Characteristics of Combustion Product in Premixed LPG/Air Flames (예혼합 LPG/공기화염에서 연소생성물의 국소농도 및 화염온도특성)

  • 김태권;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 2001
  • Measurements of local CO, $CO_2$, $O_2$, $N_2$, $C_3$H$_{8}$, NOx concentrations and flame temperature are made for partially premixed flame with and without acoustic excitation. The CO, $CO_2$, $O_2$, $N_2$, and $C$_3$H_8$ concentrations are determined by thermal conductivity detection (Gas-chromatograph) and NOx concentrations are determined by chemiluminescent detection (NOx analyser). To measure local sample concentration, sampling probe was made by quartz with inlet diameter of 0.25mm. In the case of excitation, the visual shape of the flame is changed from laminar flame to turbulent-like flame. The flame length is also reduced, and the flame width becomes broad. In the observation of emission concentration without acoustic excitation, meanwhile, the $CO_2$ and NOx concentrations peak at flame front where the mixture meets with surrounding air, and the CO concentration is increasing at maximum position of CO2 concentration and peaks at the centerline of the burner. In the case of acoustic excitation, the $CO_2$ concentration is widely occurred at nozzle of the burner and is higher relative to unexcitation. The CO concentration is much reduced, but NOx concentration is more increasing. And flame temperature is higher relative to unexcitation. These are caused by enhancing of mixing with surrounding air due to excitation. However, in the case of acoustic excitation, the total NOx concentration is reduced because of the shortened flame length which affects residence time.e.

  • PDF

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF