DOI QR코드

DOI QR Code

Effect of AC Electric Fields on Counterflow Diffusion Flame of Methane

메탄의 대향류 확산화염에 대한 AC 전기장의 영향

  • Choi, Byung-Chul (Environment & Plant Team, Korean Register of Shipping) ;
  • Kim, Hyung-Kuk (Automotive System Group, Samsung Techwin Co., Ltd.) ;
  • Chung, Suk-Ho (King Abdullah University of Science and Technology, Clean Combustion Research Center)
  • Received : 2012.03.30
  • Accepted : 2012.05.02
  • Published : 2012.08.01

Abstract

The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force.

대향류 버너에서 질소로 희석시킨 메탄 연료의 확산화염에 대하여 AC 전기장을 인가하여 전압크기 및 주파수 변화에 의한 영향을 실험적으로 조사하였다. 그 결과, 임계주파수를 초과하는 AC 주파수 영역에서 안정한 확산화염이 나타났으며, 인가된 AC 전압크기의 증가에 따라 그 임계주파수는 증가하다가 약 35Hz 로 일정한 값을 보였다. 반면에, 임계주파수 미만의 AC 주파수 영역에서, 그 확산화염은 인가된 AC 주파수에 동기되어 진동하였다. 화염지역 내에 양이온들은 로렌츠 힘에 의하여 가속되고, 그 양이온과 중성자 간의 분자단위의 충돌에 의한 운동량의 전달에 의해 전체적인 유동장의 변화가 발생하는데, 이러한 이온풍의 효과에 의하여 화염의 진동 현상이 나타날 수 있다.

Keywords

References

  1. Won, S.H., Cha, M.S., Park, C.S. and Chung, S.H., 2007, "Effect of Electric Fields on Reattachment and Propagation Speed of Tribrachial Flames in Laminar Coflow Jets," Proc. Combust. Inst., Vol. 31, pp. 963-970.
  2. Lee, S.M., Park, C.S., Cha, M.S. and Chung, S.H., 2005, "Effect of Electric Fields on the Liftoff of Nonpremixed Turbulent Jet Flames," IEEE Trans. Plasma Sci., Vol. 33, No. 5, pp. 1703-1709. https://doi.org/10.1109/TPS.2005.856414
  3. Ryu, S.K., Kim, Y.K. and Chung, S.H., 2007, "Effect of Electric Fields on Reattachment of Lifted Flame at Low AC Frequency," 5th US Combust. Meeting, A38.
  4. Weinberg, F., Carleton, F. and Dunn-Rankin, D., 2008, "title," Combust. Flame, Vol. 152, pp. 186-193. https://doi.org/10.1016/j.combustflame.2007.07.007
  5. Kim, W., Do, H., Mungal, M.G. and Cappelli, M.A., 2008, "title," Combust. Flame, Vol. 153, pp. 603-615. https://doi.org/10.1016/j.combustflame.2007.11.015
  6. Won, S.H., Ryu, S.K., Kim, M.K., Cha, M.S. and Chung, S.H., 2008, "Effect of Electric Fields on the Propagation Speed of Tribrachial Flames in Coflow Jets," Combust. Flame, Vol. 152, pp. 496-506. https://doi.org/10.1016/j.combustflame.2007.11.008
  7. Marcum, S.D. and Ganguly, B.N., 2005, "Electric Field Induced Flame Speed Modification," Combust. Flame, Vol. 143, pp. 27-36. https://doi.org/10.1016/j.combustflame.2005.04.008
  8. Jaggers, H.C. and Engel, A.V., 1971, "The Effect of Electric Fields on the Burning Velocity of Various Flames," Combust. Flame, Vol. 16, pp. 275-285. https://doi.org/10.1016/S0010-2180(71)80098-6
  9. Ryu, S.K., Won, S.H., Cha, M.S., Fujita, O. and Chung, S.H., 2007, "Effect of Electric Fields on Flame Displacement Speed of Propagating Premixed Flames in Tube," 6th Asia-Pacific Conference on Combustion.
  10. Bowser, R.J. and Weinberg, F.J., 1972, "The Effect of Direct Electric Fields on Normal Burning Velocity," Combust. Flame, Vol. 18, pp. 296-300. https://doi.org/10.1016/S0010-2180(72)80141-X
  11. Jaggers, H.C., Bowser, R.J. and Weinberg, F.J., 1972, "The Effect of Electric Fields on Burning Velocity," Combust. Flame, Vol. 19, pp. 135-136. https://doi.org/10.1016/S0010-2180(72)80095-6
  12. Ju, Y., Macheret, S.O., Shneider, M.M., Miles, R.B. and Sullivan, D.J., 2004, "Numerical Study of the Effect of Microwave Discharge on the Premixed Methane-Air Flame," 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Fort Lauderdale, Florida, AIAA 2004-3707.
  13. Van Den Boom, J.D.B.J., Konnov, A.A., Verhasselt, A.M.H.H., Kornilov, V.N., De Goey, L.P.H. and Nijmeijer, H., 2009, "The Effect of a DC Electric Field on the Laminar Burning Velocity of Premixed Methane Air Flames," Proc. Combust. Inst., Vol. 32, pp. 1237-1244.
  14. Saito, M., Arai, T. and Arai, M., 1999, "Control of Soot Emitted from Acetylene Diffusion Flames by Applying an Electric Field," Combust. Flame, Vol. 119, pp. 356-366. https://doi.org/10.1016/S0010-2180(99)00065-6
  15. Cha, M.S., Lee, S.M., Kim, K.T. and Chung, S.H., 2005, "Soot Suppression by Nonthermal Plasma in Coflow Jet Diffusion Flames Using a Dielectric Barrier Discharge," Combust. Flame, Vol. 141, pp. 438-447. https://doi.org/10.1016/j.combustflame.2005.02.002
  16. Ohisa, H., Kimura, I. and Horisawa, H., 1999, "Control of Soot Emission of a Turbulent Diffusion Flame by DC or AC Corona Discharges," Combust. Flame, Vol. 116, pp. 653-661. https://doi.org/10.1016/S0010-2180(98)00054-6
  17. Lawton, J. and Weinberg, F.J., 1969, Electrical Aspects of Combustion, Clarendon Press, Oxford.
  18. Weinberg, F.J., 1986, Advanced Combustion Methods, Academic Press.
  19. Kono, M., Iinuma, K. and Kumagai, S., 1981, "The Effect of DC to 10 MHz Electric Field on Flame Luminosity and Carbon Formation," Proc. Combust. Inst., Vol. 18, pp. 1167-1174.
  20. Kono, M., Carleton, F.B., Jones, A.R. and Weinberg, F.J., 1989, "The Effect of Electric Field on Sooting Flame," Combust. Flame, Vol. 78, pp. 357-364. https://doi.org/10.1016/0010-2180(89)90023-0
  21. Sun, L., Lins, G. and Hammer, T., 2005, "Interaction of a Low-Pressure Flat Flame with an Electric Field," Proc. European Combust. Meeting.
  22. Morel, T., 1975, "Comprehensive Design of Axisymmetric Wind Tunnel Contractions," Journal of Fluids Engineering, Transactions of the ASME, Vol. 97, pp. 225-233. https://doi.org/10.1115/1.3447255