• Title/Summary/Keyword: Combustion flames

Search Result 642, Processing Time 0.027 seconds

A Large-scale Structural Mixing Model applied to Blowout of Turbulent Nonpremixed Jet Flames in a Cross air-flow

  • Lee, Kee-Man;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.163-173
    • /
    • 1997
  • This article presents an application of a large-scale structural mixing model (Broadwell et al. 1984) to the blowout of turbulent reacting jets discharging perpendicularly into an unconfined cross air-flow. In an analysis of a common stability curve, a plausible explanation can be made that the phenomenon of blowout is related only to the mixing time scale of the two flows. The most notable observation is that the blowout distance is traced at fixed positions at all times according to the velocity ratio R. Measurements of the lower blowout limits in the liftable flame agree qualitatively with the blowout parameter ${\varepsilon}$, proposed by Broadwell et al. Good agreement between the results calculated by a modified blowout parameter ${\varepsilon}^'$ and experimental results confirms the important effect of a large-scale structure in specifying the stabilization feature of blowouts.

  • PDF

Study on the characteristics of laminar lifted flames using plannar laser induced fluorescence technique (평면 레이저유도 형광법을 이용한 부상화염의 특성 연구)

  • Lee, Byeong-Jun;Jeong, Seok-Ho;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.23-32
    • /
    • 1997
  • Characteristics of the lifted flame which is generated by issuing of the fuel through the miniature nozzle, d=0.164 mm, are studied using the planar laser induced fluorescence technique. OH radical is excited on the $Q_1$(8) line of the $A^2{\Sigma}\ ^+{\leftarrow}\ X^2{\prod}$ (1,0) band transition(283.55 nm) and LIF signals are captured at the bands of (0,0) and (1,1) transition(306-326 nm) using the filters and ICCD camera. Hydroxyl radical(OH) profile for nozzle attached flame shows that OH radical populations at the flame sides and flame tip are larger than those at the base. But for the lifted flame (tribrachial flame) case, those are larger at the flame base than at the flame tip and flame sides. The OH radical is more dense near the center line of flame base at the blowing out. This fact proves the Chung and Lee's blowout theory - blowout occurs when the flame is anchored at the flame axis.

  • PDF

The Measurement of Soot Particle Temperatures Using a Ratio Pyrometry (Ratio Pyrometry를 이용한 매연입자 온도 계측에 대한 고찰)

  • Nam, Youn-Woo;Lee, Won-Nam;Lee, Chun-Beom
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.124-129
    • /
    • 2004
  • The ratio pyrometry has been investigated experimentally for the measurement of soot particle temperatures in a diffusion flame. A tungsten lamp calibration system was constructed and used in order to calibrate the ratio pyrometry and two-color pyrometry using a KL-factor method. Once the ratio pyrometry is properly calibrated, temperatures measured using a ratio pyrometry were virtually identical to those obtained from a KL-factor method. The effect of soot volume fraction on temperature measurement was almost negligible, and therefore, the ratio pyrometry could provide the useful temperature information of sooting flames. The potential application of a ratio pyrometry to a 2-D temperature measurement without sacrificing the accuracy was demonstrated.

  • PDF

The Effect of DBD Plasma on Fuel Reforming and on the Characteristics of Laminar Flames (DBD 플라즈마에 의한 연료개질 및 층류 화염 특성 변화)

  • Kim, Eungang;Park, Sunho;Song, Young-Hoon;Lee, Wonnam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.195-198
    • /
    • 2014
  • $Fuel/N_2$ and fuel/air mixtures were treated with non-thermal DBD plasma and the changes in characteristics of laminar diffusion flame have been observed. Flame of $Fuel/N_2$ mixture generated more soot under plasma condition while less amount of soot was formed from fuel/air mixture flame. Luminescence spectrum and gas chromatography results confirmed that plasma energy converts a fraction of fuel molecules into radicals, which then form $C_2$, $C_3$, $C_4$ and higher hydrocarbon under no oxygen condition or turn into CO, $CO_2$ and $H_2O$ when oxygen is present.

  • PDF

Low Strain Rate Flame Extinction Characteristic of Oxygen Enhanced Opposed Flow Partially Premixed Flame in a Mesoscale Channel (채널 내부 대항류 산소부화 부분예혼합 화염의 저신장율 소화특성)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.243-244
    • /
    • 2014
  • The opposed flow flame in a mesoscale channel was constructed to observe the flame stabilization behaviors at low strain rate conditions (<$10s^{-1}$). The purpose of this study is to get the overall flame behaviors of partially premixed flames with oxygen enhanced conditions at low strain rates. The oxygen ratio in oxidizer was changed from 18 to 30 %. Conclusively, the flame extinction limit approached to about $1s^{-1}$, and divided into three representative regimes corresponding to self propagating flame, transitional flame, quenching flame regimes.

  • PDF

Analysis of Acoustic Excitation Effect on Lean Blowoff in Premixed Bluff Body Flames (예혼합 보염기 화염의 희박 화염 날림에 음향 가진이 미치는 영향에 관한 연구)

  • Jeong, Chanyeong;Hwang, Jeongjae;Yoon, Jisu;Kim, Taesung;Shin, Jeoik;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.149-151
    • /
    • 2014
  • The blowoff phenomenon was experimentally investigated in a ducted combustor according to the acoustic excitation. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. A resonance phenomenon occurs when the excitation frequency approaches the harmonic frequency of the combustor. The resonance increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer. Consequently, the mixture velocity exceeds the burning velocity and the blowoff occurs at the higher equivalence ratio.

  • PDF

A Numerical Study of the Flame Cell Dynamics in Opposed Nonpremixed Tubular Configuration (비예혼합 튜브형상내 화염셀의 거동에 대한 수치 해석적 연구)

  • Park, Hyunsu;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.175-178
    • /
    • 2014
  • The flame cell dynamics in 2-D opposed nonpremixed tubular configuration was investigated using high-fidelity numerical simulations. The diffusive-thermal instability occurs as the $Damk{\ddot{o}}hler$ number, Da, approaches the 1-D extinction limit of the tubular flames and several flame cells are generated depending on Da, and flame radius. In general, the number of flame cells are found close to the largest wave number from the linear stability analysis. It was also found from the displacement speed analysis that during the local flame extinction and cell formation, negative edge flame speed is observed due to small gain from reaction compared to large loss from diffusion.

  • PDF

A Study on the Heat Transfer Characteristics According to the Impinging Distance of Stagnation Point in Syngas Impinging Jet Flames (합성가스 충돌제트화염에서 충돌거리에 따른 정체점에서의 열전달 특성 연구)

  • Sim, Keunseon;Kim, Dongchan;Choi, Jongmin;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.225-226
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of syngas/air mixture impinging jet flame with 10% hydrogen content. Effects of impinging distance, Reynolds number as major parameters on surface temperature of stagnation point were examined experimentally by the data acquisitions from k-type thermocouple. There were 2 times of maximum peak point of stagnation point with respect to the impinging distance for the investigation. As reynolds number increases, the nusselt number and convective heat transfer coefficient increased accordingly.

  • PDF

A study on the stabilization characteristics of the diffusion flame formed behind a bluff body (Bluff Body 후류에 형성되는 확산화염의 보염특성에 관한 연구)

  • ;;An, Jin-Geun;Song, Kyu-Keun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3344-3351
    • /
    • 1995
  • The stability of diffusion flame formed behind a bluff body with fuel injection slits was experimentally investigated in various fuel injection angles, fuel injection ratios, grids and extension ducts. The flame stability limits, temperature distributions and length of recirculation zones, direct photographs of flames were measured in order to discuss the stabilization mechanism of the diffusion flame. The results from this study are as follows. The fuel injection angle is an important factor in determining the flame stability. Stability limits can be improved by variety of the fuel injection ratio. When the grid and extension duct are set, stability characteristics are varied with the blockage ratios, grid intervals, and grid numbers. The recirculation zone not only serves as a steady ignition source of combustion stream but also governs the stabilization mechanism.

Interaction between a Flame and a Non-thermal Plasma (화염과 저온플라즈마의 상호작용에 관한 연구)

  • Cha, Min-Suk;Lee, Sang-Min;Kim, Kwan-Tae;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.179-184
    • /
    • 2002
  • Interaction between flames and non-thermal plasmas of DBD type has been experimentally investigated. Vigorous streamers were observed under flame conditions because of the increase of reduced field (electrical) at high temperature as well as the seeding of free electrons and ions generated inside the flame. Flame lengths were significantly shortened as the applied voltage increased on account of intense mixing by ionic winds and soot-induced flows. Flame luminosities severely decreased under plasma conditions, which means the reduction of soot, since the residence time was reduced because of the flame shortening. Temperature and major species concentrations measured by FTIR were not changed despite the plasma generation. which shows overall chemistries were not affected by non-thermal plasmas.

  • PDF