• Title/Summary/Keyword: Combustion flame

Search Result 2,024, Processing Time 0.039 seconds

Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization (수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가)

  • Kwon, Seung-Mi;Choi, Yu-Ri;Park, Myoung-Kyu;Lee, Ho-Joon;Kim, Gwang-Rae;Yoo, Seung-Sung;Cho, Seog-Ju;Shin, Jin-Ho;Shin, Yong-Seung;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.384-397
    • /
    • 2021
  • Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and the corresponding health risk effects. Objectives: The purpose of this study is to provide scientific evidence for the city of Seoul's VOC reduction measures by confirming the risk of each VOC emission source. Methods: In 2020, 56 VOCs were measured and analyzed at one-hour intervals using an online flame ionization detector system (GC-FID) at two measuring stations in Seoul (Gangseo: GS, Bukhansan: BHS). The dominant emission source was identified using the Positive Matrix Factorization (PMF) model, and health risk assessment was performed on the main components of VOCs related to the emission source. Results: Gasoline vapor and vehicle combustion gas are the main sources of emissions in GS, a residential area in the city center, and the main sources are solvent usage and aged VOCs in BHS, a greenbelt area. The risk index ranged from 0.01 to 0.02, which is lower than the standard of 1 for both GS and BHS, and was an acceptable level of 5.71×10-7 to 2.58×10-6 for carcinogenic risk. Conclusions: In order to reduce the level of carcinogenic risk to an acceptable safe level, it is necessary to improve and reduce the emission sources of vehicle combustion and solvent usage, and eco-car policies are judged to contribute to the reduction of combustion gas as well as providing a response to climate change.

Analysis of Fire Occurrence Characteristics According to Ignition Heat Sources (발화열원에 따른 화재발생 특성 분석)

  • Lee, Kyung-Su;Kim, Tae-Hyeung;Lee, Jae-Ou
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.280-289
    • /
    • 2022
  • Purpose: In this study, the characteristics of fire occurrence according to ignition heat sources such as operating equipment, cigarette/lighter fire, and flame/fire were analyzed. Method: One-way ANOVA and cross-analysis were used to analyze the characteristics of fire occurrence by verifying the difference between the ignition environment, fire damage status and scale, and cause of ignition according to the ignition heat source. Result: The fire occurrence characteristics were analyzed through As a result of the analysis, it was found that fires caused by operating devices occurred more frequently on weekdays than other ignition heat sources, and the number of victims and the number of victims were the highest, so mobilization of firefighting power and property damage were the greatest. The initial ignition was generated by electric and electronic devices, and the combustion was expanded by the synthetic resin. For fires caused by cigarette and lighter fires, the most fires occurred on Saturdays and Sundays, and the mobilization of the police force was more characteristic than the mobilization of the firefighting force. In particular, it was found that the initial ignition and combustion expansion were caused by paper, wood, and hay. Fires caused by sparks and sparks occurred most frequently on Saturdays and Sundays, and initial ignition and combustion expansion were found to be caused by paper, wood, and hay. In particular, it showed the characteristic that it occurred in the place farthest from the fire station. The common characteristic of all ignition heat sources was that the fire occurred most frequently in the afternoon time, and the fire type was predominantly the building structure fire, and only the ignition point was burned the most. Conclusion: In order to prevent fire and minimize damage, it is necessary to analyze the tendency of fire occurrence and to prepare appropriate preparations according to the fire occurrence factors. In order to analyze the characteristics of fire occurrence using public data in the future, it is necessary to standardize disaster data and to open and activate data.

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

A Study on the Confirmation of non-flammabikity of the Cast Resin Mold Transformer in Subway Substation (지하철 변전실용 진공주형형 몰드변압기의 난연성 확인에 관한 연구)

  • 정용기;장성규;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.99-107
    • /
    • 1998
  • This dissertationhas confirmed the non-flam mability of cast mold transformer that is increasingly used lately. As a research progress, the investigation has been performed on the installation status and each line of the subway system which have the most mold transformer accidents, and the impediment status of the transformer for rectifier and the high-voltage distribution transformer per each manufacturer. Then, a high voltage mold of the actual mold transformer has been installed in the horiwntal heating furnace and the heat has been applied by the standard heating temperature curve of KSF 2257(Fireproof testing meth od of the construction structures: 1993). Accordingly, the combustibility of the mold transformer based on the test results has been found that 78 minutes has been required for the complete burning per the KSF 2257 combustion test curve and that, after stopping the heat application of the horizontal furnace after ignition, the flame progress has not been made but shown as the self-extinguishing characteristics when the flame progress has been checked. Thus, the non-flammability and self-extinguishability of the mold transformer have been confirmed. The result of this dissertation has indicated that the accident involving mold transformer has been progressed and expanded by the dielectric breakdown or void due to the crack in the mold rather than a fire accident caused by a short-circuit or an overload.r an overload.

  • PDF

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

An Experimental Study on Fire Safety Performance of Glass Wool Sandwich Panel (그라스울 샌드위치패널의 화재 안전 성능에 대한 실험적 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.21-27
    • /
    • 2012
  • A real A real scale fire test was performed in accordance with KS F ISO 9705 test method to investigate the combustion characteristics of glass wool sandwich panels. To do this, six kinds of specimens having different density and thickness were examined. The glass sandwich panels were installed inside the room, which had internal dimensions of 2.4 m wide${\times}3.6m$ deep${\times}2.4m$ high. also, combustion characteristic are determined through the exposure of specimens to flame by the propane gas burner has a capacity of 100 kW (10 minutes) and 300 kW (10 minutes) for total 25 minutes of test time. Results of the real sale fire test, it was found that maximum HRR of each specimen was 333.2~365.5 kW, maximum heat flux was 12.4~12.9 kW/$m^2$ And, maximum internal temperature for all specimens was not over $500^{\circ}C$. During the real scale fire test, flash-over didn't occur and the difference by density and thickness of specimen was not found from the results of HRR, heat flux, and internal temperature measurement.

Effects of Inert Gas Composition Variations in Biogas on the Performance of a SI Engine (바이오가스 내의 불활성 가스 성분 변화가 SI 엔진 성능에 주는 영향)

  • Lee, Sunyoup;Park, Seunghyun;Park, Cheolwoong;Kim, Changgi;Lee, Janghee;Woo, Sejong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.14-20
    • /
    • 2012
  • Biogas can be obtained from biogenic materials through an anaerobic digestion process. Since biogas has low calorific value and its composition significantly varies, appropriate combustion strategies need to be established to obtain stable combustion in engine applications. In this study, efforts have been made to investigate the effects of inert gas composition variations on engine performance and emissions. Results show that the MBT spark timing was advanced and $NO_x$ was reduced as the inert gas in the biogas rose. Moreover, $NO_x$ emission drop in $CO_2$ diluted biogas was more significant than that of $N_2$ due to higher heat capacity of $CO_2$, while THC emissions showed the opposite tendency. Thermal efficiency was increased in $N_2$ case with elevation of $N_2$ due to the decreased heat loss and PMEP. However, there is no difference in $CO_2$ case because of deteriorated flame propagation speed.

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Study on the Ignition of Fallen Leaves by a Cigarette Butt (담뱃불에 의한 낙엽 착화에 대한 연구)

  • Kim, Dong-Hyun;Lee, Myung-Bo
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.39-49
    • /
    • 2010
  • In order to find out the environment vulnerable to cigarette fire in which smoldering fire grows into flame fire, a cigarette combustion test and numerical analysis were performed using fallen leaves of P. densiflora and Q. variabilis. Tests were repeated five times on 2,304 conditions with four cases of fuel moisture content, six cases of velocity, two cases of cigaret location against direction of the wind, three cases of cigaret location against fallen leaves, two species of thickness of cigaret, two cases of slope conditions and two cases of fragileness of fallen leaves. Cigaret fire's flammability to the fallen leaves was monitored by analyzing heat transfer process using CFD (Computational Fluid Dynamic) under the most optimal condition through an ignition test on 2,304 conditions. The result of a cigaret fire ignition test for fallen leaves, found ignition in 197 conditions out of 2,304 conditions representing 8.6% while 13 conditions representing approximately 0.6% saw ignition across five repeated tests. The result of CFD analysis, the temperature of the bottom of fallen leaves was reached on self-ignition and pilot-ignition temperature.

Estimation Method of the Interchangeability Using Equivalent Gases in a Partial Premixed Gas Appliance (등가가스를 이용한 부분예혼합 가스기기의 호환성 판정법)

  • Kim, Jong-Min;Lee, Seung-Ro;Ha, Young-Cheol;Lee, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.761-766
    • /
    • 2010
  • The estimation method of the interchangeability in a partial premixed appliance about various compositions of natural gases using equivalent gases, experimentally. The results of the experiment in which equivalent gases were used compared with those obtained in experiments in which natural gases were used; Images of flames, lift-off limits, CO emissions, and incomplete combustion indices in KS standard for the domestic gas range were considered. From the comparison, it was observed that the length and color of the flame of the equivalent gases were almost the same as those of imported natural gases. Further, in the case of gases with Wobbe indices greater than 51 MJ/$m^3$, the KS standard for lifting limits was satisfied. Furthermore, in the case of gases with Wobbe indices less than 56.3 MJ/$m^3$, the CO mole fractions are in the range 95-100 ppm. Hence, the range of Wobbe indices 51-56.3 MJ/$m^3$ was proposed to be the range for interchangeability from the points of view of lifting limits and incomplete combustion, as prescribed in the domestic gas range in the case of imported natural gases.