• Title/Summary/Keyword: Combustion behavior

Search Result 526, Processing Time 0.019 seconds

Comparison of the Combustion Characteristics of Methane-Air and Gasoline-Air Mixtures (가솔린.메탄의 연소특성 비교)

  • Park, M.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.7-11
    • /
    • 2002
  • Comparison of the combustion characteristics of methane-air and gasoline-air mixtures has been conducted experimentally by a spherical bomb technique. The results indicate 1) the burning velocity of gasoline is slightly higher than that of methane, but their basic behavior of combustion characteristics, positive dependence on temperature and negative one on pressure, are the same, and 2) 20 vol.% addition of hydrogen to methane enhances the burning velocity by about 30%, but does not come to reverse the tendency of pressure dependence to that of pure hydrogen.

  • PDF

A Study on the Analysis of the Combustion Behavior and Carbonization Pattern of Vinyl Flooring on Which a Real-Scale Combustion Test Was Performed (실물 연소 실험이 진행된 비닐장판의 연소거동 및 탄화 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.120-125
    • /
    • 2019
  • A real-scale combustion test was conducted on a vinyl flooring in a divided space, with 50 mL of an inflammable liquid sprayed on it. The combustion behavior of the vinyl flooring was studied in real time, and the carbonization patterns of the surface and cross-sections of the carbonized vinyl floor were analyzed. When the flame ignited by gasoline reached its peak, a continuously flaming region, intermittent flaming region, plume region, etc., were formed. The combustion of 50 mL gasoline on vinyl flooring took 26 s, and a halo pattern was observed. This test involved spraying kerosene evenly on the vinyl flooring and attempting to ignite the flooring using a gas torch, which failed. After the combustion of the vinyl flooring was complete, its carbonized range was measured to be 600 mm in length and 380 mm in width, and the carbonized area was 1000 ㎟. Heat transformed the coated layer of surface of the carbonized vinyl flooring into a carbonized layer, which became harder. The analysis of cross-section of the boundary surface of the carbonized vinyl flooring using a stereoscopic microscope showed that the vinyl flooring was bubbling, and that the white boundary layer at the bottom of the coated layer had disappeared.

Combustion Characteristics of Pool and Whirl Fire on Methanol by Height of Fire Source using the Small Scale (화점높이 변화에 따른 메탄올의 소규모 Pool 및 Whirl Fire의 연소특성)

  • Park, Hyung-Ju
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • This study is intended to understand flame behavior of pool and whirl fire by height of fire source. Liquid fuel was methanol which is used in many studies for pool and whirl fire. Size of vessel was $100{\times}100{\times}50$ and the vessel was made by stainless steel. Combustion time, mass loss rate, flame temperature, flame height and air entrainment rate from the outside to flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that combustion characteristics by height of fire source got a more effect on whirl fire than pool fire.

Cross-section micrography of burning pulverized coal particles (연소중 미분탄의 단면관측)

  • 한재현;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.717-725
    • /
    • 1989
  • An experimental investigation on the combustion behavior of pulverized coal particles was performed using the cross-section micrography techniques while sample coal particles were collected in-situ from the flow reactor. The coal particles were representative of pulverized bituminous coal undergoing a raped pyrolysis and combustion, however, quenched at the time when the particles were deposited onto a sample plate. The internal structure of coal was observed to change as deposited. Upon injection into a flow reactor, bituminous coal particles showed many holes which represented internal pore formation during the pyrolysis. The relative portion of the remaining matrix of coal was decreasing as the residence time progressed. This direct observation of cross-section of burning particles enabled better understanding of the coal combustion behavior.

Hydriding Behavior of an Mg-xNi Alloys Prepared in Hydriding Combustion Synthesis (수소화 연소합성법을 이용한 Mg-xNi 금속수소화물의 수소저장특성에 관한 연구)

  • Kim, Ji-Ho;Choi, Duck-Kyun;Hwang, Kwang-Taek;Han, Jeong-Sub;Kim, Jin-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • Hydriding combustion synthesis (HCS) can produce full hydrides of alloys and in a short time. The conventional process based on ingot metallurgy cannot produce Mg-based alloy easily with the desired composition and the cast product needs a ling activation process for the practical use of hydrogen storage. In this study, the hydriding properties of Mg-xNi (x=5, 13.5, 54.7wt.%) alloys prepared by hydriding combustion synthesis were evaluated. The hydrogen storage capacity and kinetics of HCS Mg-xNi alloys were strongly dependent on the content of Ni. The HCS Mg-13.5wt.%Ni alloy shows the hydriding behavior to reach the maximum capacity within 30 min. and the reversible $H_2$ storage of 5.3wt.% at 623 K.

Non-Steady Group Combustion of Liquid Fuel Droplets (액체연료 액적군 의 비정상 집단연소)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.544-552
    • /
    • 1984
  • A non-steady group combustion model of a spherical droplets cloud has been developed to access the non-steady effects of collective behavior of fuel droplets on combustion characteristics and cloud structure. A system of conservation equations of droplets cloud in axisymmetric spherical coordinate was solved by numerical methods for n-Butylbenzene(C$_{10}$ / $H_{14}$) It was found that the effect of initial droplet size on combustion characteristics is dominated compare with effects of cloud size and number density of droplets. For dense droplets cloud, external group combustion mode is established during main part of cloud life time, and internal and single droplet combustion modes are simultaneously established for the dilute droplets cloud. Radius of cloud and external envelope flame are slowly decreased during main part of cloud life time, and suddenly decreased at end of combustion period.d.

The Combustion Mechanism of Tungsten-potassium Perchlorate-barium Chromate Delay power ($W/KClO_4/BaCrO_4$ 지연제의 연소 메카니즘)

  • Nakamura, Hidesugu;Akiyoshi, Miyako;Hara, Yasutake
    • Explosives and Blasting
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2000
  • Thermal analysis, analysis of combustion residue and combustion characteristics measure ment such as burning rate or temperature were carried out to clarify the combustion mechanism of a tungsten- potassium perchlorate-barium chromate chromate delay powder. The results obtained are as follows. The main reaction of the delay powder of tungsten-potassium perchlorate-barium chromate is the oxidation of tungsten by potassium perchlorate. Barium chromate acts as a burning rate modifier, and the smaller the larger is the burning rate. Three types of delay composition used in this study show characteristic burning behavior. A stoichiomertric or a oxidizer-rich composition has a small linear burning rate. although it is has a large heat of combustion. On the other hand, a tungsten-excess or a fuel-rich composition with a small heat of combustion has a larger linear burning rate than the former, showing a small fractional oxidation of tungeten (below 10%) contained in the delay powder. From these results, a surface combustion mechanism is proposed for the combustion mechanism of this delay powder.

  • PDF

Effect of the Unmixedness of Fuel and Air on the Pressure Fluctuations in a Model Gas Turbine Combustor (연료와 공기의 혼합정도가 모델 가스터빈 연소기내의 압력변동에 미치는 영향)

  • Hong, Jung-Goo;Shin, Hyun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3264-3269
    • /
    • 2007
  • Combustion instability is a serious obstacle for the lean premixed combustion of gas turbines, and can even cause fatal damage to the combustor and the entire system. Thus, improved understanding of the mechanisms of combustion instability is necessary for designing and operating gas turbine combustors. In this study, in order to understand the instability phenomena, an experimental study was conducted in a rearwardstep dump combustor with LPG and air. The fluctuations of pressure and heat release were measured by piezoelectric pressure sensor and High speed Intensified Charge Coupled Device (ICCD) camera respectively. Various types of combustion modes occurred in accordance with the equivalence ratio and the fuel supplying conditions. The unmixedness of the fuel and air can be controlled by changing the mixing distance ($L_{fuel}$). It is found that the unmixedness of the fuel and air affects the characteristics of flame behavior and pressure fluctuations in a lean premixed flame.

  • PDF

A Study on Combustion Property of Cellulose Insulation according to Particle Size (입도에 따른 셀룰로오스 단열재의 연소특성에 관한 연구)

  • Choi, Jeong-hwa;Kim, Hong;Yoo, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.62-67
    • /
    • 1996
  • The smouldering combustion of cellulose Insulation treated with boric acid - borax - aluminium sulfate as combustion retardants are examined by candle type combustibility tester. The flammability behavior of combustion process is LOI, Smouldering region, Smouldering, Flamming spread region and Flame spread region. In this experiment, Particle size of four examined LOI, L.Point, H.Point, at the biggest size show high LOI. The surface area is connected with thermal conduction. The phenomena of combustion transition are governed by quantity of combustible gas generation in heating zone of cellulose insulation.

  • PDF