• Title/Summary/Keyword: Combustion Stabilization

Search Result 157, Processing Time 0.023 seconds

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용에 관한 연구)

  • Sohn Chae-Hoon;Moon Yoon-Wan;Ryu Chul-Sung;Kim Young-Mog
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.259-262
    • /
    • 2002
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with various specifications of these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the specific stability characteristics depending on the operating condition and has small dynamic stability margin. The most hazardous frequency is clearly identified through Fast Fourier Transform. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect. Thrust loss caused by baffle installation is about $2{\%}$.

  • PDF

Flame Stabilization and Structures in Narrow Combustion Space (좁은 연소공간에서의 화염 안정화와 화염구조)

  • Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.159-162
    • /
    • 2012
  • Combustion in a narrow space has been interested as a model of meso-scale combustors (or micro-combustors). Premixed flames have been used to overcome flame quenching in a narrow space and non-premixed flames have been used to improve flame stabilization. In this study, overall characteristics of premixed flame and non-premixed flame in narrow combustion spaces were reviewed. Various effects such as the flow velocity distribution, thermal interaction, enhanced mass diffusion were discussed and an eventual structure of the flame at the extinction limit was introduced.

  • PDF

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.387-389
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.125-128
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Basic Experiment on the Propagation Characteristics of Premixed Flames in Narrow Annular Coaxial Quartz Tubes (좁은 다중 동축 석영관 내부에서의 예혼합 화염의 전파 특성에 대한 기초 실험)

  • Cho, Moon Soo;Baek, Da Bin;Kim, Nam Il
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in narrow annular coaxial tubes (NACT) were investigated experimentally. The NACT burner was proposed as a model of a cylindrical refractory burner, and it was made of quartz tubes. Flame stabilization conditions affected by the characteristic length of the burner was investigated with the variation of the equivalence ratio and the flow rates. Flame behaviors in narrow spaces could be directly observed. Conclusively, more wide flame stabilization conditions could be obtained at the case of the decreased channel scale. A flame instability, such as combustion noise was detected concerned with the flame oscillation observed at the surface of multi channel stage. Some flame propagation characteristics had complicated tendencies that may exist in practical porous-media combustors. Therefore, this NACT burner can be a basic configuration for the development of flame stabilization model in porous media combustor, and it will enhance our understanding about the behavior of flames in meso-scale combustion spaces.

A New Flame-Stabilization Technology for Lean Mixtures

  • Kim, Duck-Jool;Choi, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.426-432
    • /
    • 2000
  • The development of a low-pollution burner is important for saving energy and preserving the environment. A low-pollution burner can be produced by lean-mixture combustion and general combustion technology. The flammable limit of premixed flame is narrower than that of diffusion flame. Producing a lean mixture of fuel results in an effective combustion condition, which in turn produces high load and low pollution. In this study, it was found that the influx of $Q_2$ had an effect on extending the lean flammable limits and flame stabilization in a doubled jet burner. And the flame, consisting of small eddies, can be stabilized by the nozzle neck phenomena.

  • PDF

Numerical Investigation of Ram Accelerator Flow Field in Expansion Tube (Expansion Tube 내의 램 가속기 유동장의 수치 연구)

  • 최정열;정인석;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.43-51
    • /
    • 1997
  • Steady and unsteady numerical simulations are conducted for the experiments performed to investigate the ram accelerator flow field by using the expansion tube facility in Stanford University. Navier-Stokes equations for chemically reacting flows are analyzed by fully implicit and time accurate numerical methods with Jachimowski's detailed chemistry model for hydrogen-air combustion involving 9 species and 19 reaction steps. Although the steady state assumption shows a good agreement with the experimental schlieren and OH PLIF images for the case of $2H_2$+$O_2$+$17N_2$, it fails in reproducing the combustion region behind the shock intersection point shown in the case of $2H_2$+$O_2$+$12N_2$, mixture. Therefore, an unsteady numerical simulation is conducted for this case and the result shows all the detailed flow stabilization process. The experimental result is revealed to be an instantaneous result during the flow stabilization process. The combustion behind the shock intersection point is the result of a normal detonation formed by the intersection of strong oblique shocks that exist at early stage of the stabilization process. At final stage, the combustion region behind the shock intersection point disappears and the steady state result is retained. The time required for stabilization of the reacting flow in the model ram accelerator is found to be very long in comparison with the experimental test time.

  • PDF

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용 효과)

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Lee, Soo-Yong;Kim, Young-Mog;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.79-87
    • /
    • 2003
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with/without these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the peculiar stability characteristics depending on the operating condition and it is found to have small dynamic stability margin. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect.

Direct Observation of Premixed Flame Propagation Characteristics in an Annular Coaxial 5-Tubes Burner (환형 5중 동축관 연소기 내부에서의 예혼합 화염의 전파 특성 직접 관찰)

  • Cho, Moon Soo;Baek, Da Bin;Kim, Nam Il
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.24-30
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in an annular coaxial 5-tubes burner (AC5TB) were investigated experimentally. The AC5TB was made of five quartz tubes, and the flame stabilization conditions in that burner were investigated with the variation of equivalence ratio and the flow velocities. Flame behaviors inside of narrow annular tubes could be observed directly. Overall flame stabilization conditions were similar to that of the previous study, while the flame behaviors and structures were different mainly due to the controlled uniform distribution of the velocities in channels. Flame flashback conditions were thought to be governed by the competition between heat release rate, heat loss and heat recirculation in each channel. Stationary flames at a fixed location were compared in its velocity distribution and burned gas temperature across the channel. This AC5TB can be a basic configuration for the development of flame stabilization model of porous media combustors, and it will help understand about the real behavior of flames in meso-scale combustion spaces.

Analysis on the Characteristics of RICEM for Researching Combustion Characteristics of Linear Hydrogen Power System (리니어 수소동력시스템의 연소연구용 급속흡입압축기의 특성 해석)

  • Lee, J.H.;Kim, K.M.;Jeong, D.Y.;Lee, Jong-T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.66-73
    • /
    • 2005
  • Hydrogen linear power system is estimated as the next generation power system which can obtain a performance as same as fuel cell. In order to develop Hydrogen combustion power system with high thermal efficiency, it is very important to understand the basic characteristics of hydrogen combustion and establish combustion stabilization technique of its system. In this study, RICEM(Rapid Intake Compression Expansion Machine) for researching of hydrogen combustion linear power system was manufactured and evaluated, and the basic characteristics of linear RICEM were analyzed.