• 제목/요약/키워드: Combustion Modeling

검색결과 349건 처리시간 0.026초

열분해 용융소각로 내 용융로에서의 온도변화에 대한 과정론적 모델링 (A Transient Modeling of Temperature Variation in a Melting Furnace of a Pyrolysis Melting Incinerator)

  • 김봉근;양원;류태우
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.167-171
    • /
    • 2006
  • The previous models for thermal behavior in the melting furnace were deterministic, composed of such a form that if the initial input conditions are determined, the results would have been come out by using the basic heat equilibrium equations. But making the experiment by trusting the analysis results, the melted slag is fortuitously set often, because temperature variation of the melted slag in the reaction process is not point function but path function. So in this study, a transient model was developed and verified by comparing with the experimental results.

  • PDF

축소 화학반응 모델링에 의한 탄화수소 연료의 점화지연 특성 (Characteristics of the Ignition Delay for Hydrocarbon Fuels by Reduced Chemical Kinetics Modeling)

  • 김형욱;배상수;민경덕
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.44-49
    • /
    • 2001
  • Reduced chemical kinetics mechanism has been derived, which can be applicable for autoignition model of hydrocarbon fuels, and contains 23 reactions and 18 species. The present model is validated with the experimental data, where the ignition delays of several hydrocarbon fuels, such as n-heptane, i-octane, n-decane and DME(dimethylether) are measured as equivalence ratios are varied. Especially, the effects of different fuels on ignition delays can be explained by changing the rate constants of three reactions among the present model. As a result, the proposed model can be applicable to two stage ignition model of Diesel combustion.

  • PDF

스파크 점화기관의 탄화수소 배출 모델링 (Modeling of Hydrocarbon Emissions from Spark Ignition Engines)

  • 고용서
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.58-71
    • /
    • 1996
  • A model which calculates the hydrocarbon emissions from spark ignition engines is presented The model contains the formation of HC emissions due to both crevices around piston ring top land and oil films on the cylinder wall. The model also considers in-cylinder oxidation and exhaust port oxidation of desorbed HC from crevices and oil films after combustion process. The HC emissions model utilizes the results of SI engine cycle simulation. The model predicts well the trends of HC emissions from the engines when varying engine parameters.

  • PDF

열.유체 일반적 컴퓨터 프로그램의 연소과정 연구에의 응용 (An application of general-purpose computer program in heat transfer and fluid flow to combustion process)

  • 이재헌
    • 오토저널
    • /
    • 제6권2호
    • /
    • pp.1-6
    • /
    • 1984
  • 복잡한 연소과정의 예측을 위한 이론적인 연구는 Gosman, Spalding, Patankar등의 수치해석방 법을 이용하여 진행된 것들이 많다. 현재 이분야에 응용되는 일반적인 Program으로는 Boundary Layer Type의 방정식을 이용한 One-Dimensional Program (GENMIX 4, Revised GENMIX) 등이 있으나 Parabolic Type이므로 주방향에 수직된 방향으로 동일한 값이 2개 이상 존재할 수 있는 Elliptic현상을 설명하기에는 어려움이 있다. 그러므로 비록 기억용량(Computation Storage) 및 계산시간(Running Time)에 불리한 점이 있기는 하나 Elliptic상황을 해석해야만 할 경우가 있다. 본 해설은 Patankar의 Elliptic "SIMPLE" Program을 연소 해석과정에 이용되는 방법을 간단한 연소과정의 예로서 설명하는 것으로 연소과정의 연구보다도 Program의 응용성에 중점을 두었다. 따라서 실제의 물리적인 연소 mechanism에서 많은 가정을 도입하여 문제를 단순화 시켰으며 실제의 연소문제에 충분한 접근을 위해서는 turbulence-modeling과 radiation heat flux가 본 해설에 덧붙여져서 논의되어야 한다. 논의되어야 한다.

  • PDF

흡배기계의 가스유동이 체적효율에 미치는 영향 (The effects of gas flow in intake and exhaust system on volumetric efficiency)

  • 조진호;김병수
    • 오토저널
    • /
    • 제10권4호
    • /
    • pp.57-65
    • /
    • 1988
  • The study of unsteady gas exchange processes in the intake and exhaust systems of four-cylinder, four-stroke cycle internal combustion engine is described in this paper. The calculation model for the intake and exhaust systems is established and solved by the characteristic method for the equations defining these systems. A constant pressure theory is used for modeling branches of intake and exhaust manifolds. The relationship between the volumetric efficiency and the intake, exhaust pressure variation is clarified by simulation of these systems. It is found that the volumetric efficiency mainly depends on the intake pressure during the short period before the intake valves is closed, that the volumetric efficiency is influenced a little by intake chamber volume in the intake and exhaust system.

  • PDF

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • 에너지공학
    • /
    • 제28권4호
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

석탄화력발전소 연소계통의 해석을 위한 모델개발 (Development of Analysis Model for Combustion System of Coal Fired Power Plant)

  • 정환주;박용섭;김성환;장영학;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.392-394
    • /
    • 2001
  • Coal power plants are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. This paper shows and discusses the developed analysis model, such as the forced draft fan the primary air fan, the furnace and burner system, air preheater and induced draft fan, etc. in accordance with BMCR condition of boiler using the Modular Modeling System(MMS) software.

  • PDF

실험계획법과 WAVE 시뮬레이션을 이용한 엔진 작동 변수의 영향도 평가 및 최적화에 대한 연구 (Application of WAVE Modeling in Combustion performance of SI Engines Using DoE Methodology)

  • 정동원;처거;서열러;임옥택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2922-2927
    • /
    • 2008
  • The test of engine performance using the engine dynamometer needs technical researchers and facilities. A variety of CAE analysis programs and DoE(Design of Experiments) are used to analyze data efficiently instead of tests. The study got data from simulations of WAVE that used to model the SI engine to identify performance of engine. DoE makes it possible to know effectiveness of factors for power, BSFC, volume efficiency and find optimum condition in each factor through minimizing number of experiments. CA50 has effect on power and BSFC as volume efficiency is related with cylinder liner temperature and heat coefficients. The final result in DoE could be identified of consistency above 98% after substituting the data to WAVE.

  • PDF

최대 2 GPa 고압 환경에서 알루미늄 입자의 점화 특성 연구 (Aluminum particle ignition characteristics at high pressure condition up to 2 GPa)

  • 이경철;타이라 쯔바사;구군모;이재영;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.5-8
    • /
    • 2013
  • The ignition of aluminum particles under high pressure and temperature conditions is studied. The laser ablation method is used to generate aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave $CO_2$ laser is then used to heat surface of the aluminum target until ignition is achieved. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength. The radiant temperature is measured with respect to various pressures for tracing of required heating energy for ignition. Then the ignition temperature is deduced from the radiant temperature using the thermal diffusion equation. The established ignition criteria for corresponding temperature and pressure can be used in the modeling of detonation behavior of heavily aluminized high explosives or solid propellants.

  • PDF

연소기 개발에서 시뮬레이션 기술의 활용 (Application of non-reacting and reacting flow simulation for combustor development)

  • 정승채;양시원;김신현;박희호;안철주;윤삼손
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.123-126
    • /
    • 2013
  • Combustor development requires high fidelity simulation capable of predicting recirculation zone (RZ), temperature field, and pollutant emission. Swirling flow is widely used in combustor for its benefits in efficient mixing and flame stabilization by RZ. Large eddy simulation (LES) is used to calculate swirling flow in an expanding pipe [1], and shows higher accuracy than RANS. Reactive flow modeling using LES and flamelet model is validated with experiments by Barlow et al. [4] and Masri et al. [3]. Finally, heat transfer simulation of Samsung Techwin's combustor liner is presented.

  • PDF