• Title/Summary/Keyword: Combustion Modeling

Search Result 349, Processing Time 0.019 seconds

Modeling of Turbulent Molecular Mixing by the PDF Balance Method for Turbulent Reactive Flows (난류연소 유동장에서의 확률밀도함수 전달방정식을 이용한 난류혼합 모델링)

  • Moon, Hee-Jang
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 1997
  • A review of probability density function(PDF) methodology and direct numerical simulation for the purpose of modeling turbulent combustion are presented in this study where particular attention is focused on the modeling problem of turbulent molecular mixing term appearing in PDF transport equation. Existing mixing models results were compared to those evaluated by direct numerical simulation in a turbulent premixed medium with finite rate chemistry in which the initial scalar field is composed of pockets of partially burnt gases to simulate autoignition. Two traditional mixing models, the least mean square estimations(LMSE) and Curl#s model are examined to see their prediction capability as well as their modeling approach. Test calculations report that the stochastically based Curl#s approach, though qualitatively demonstrates some unphysical behaviors, predicts scalar evolutions which are found to be in good agreement with statistical data of direct numerical simulation.

  • PDF

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

Evolution, Fields of Research, and Future of Chemical-Looping Combustion (CLC) process: A Review

  • Shahrestani, Masoumeh Moheb;Rahimi, Amir
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.299-308
    • /
    • 2014
  • This study presents a review on Chemical looping combustion (CLC) development, design aspects and modeling. The CLC is in fact an unmixed combustion based on the transfer of oxygen to the fuel by a solid oxygen carrier material avoiding the direct contact between air and fuel. The CLC process is considered as a very promising combustion technology for power plants and chemical industries due to its inherent capability of $CO_2$ capturing, which avoids extra separation costs of the of $CO_2$ from the rest of flue gases. This review covers the issues related to oxygen carrier materials. The modeling works are reviewed and different aspects of modeling are considered, as well. The main drawbacks and future research and prospects are remarked.

Application of Intra-particle Combustion Model for Iron Ore Sintering Bed (제철 소결공정에 대한 단입자 연소 모델의 응용)

  • Yang, Won;Choi, Sang-Min;Jin, Hong-Jong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.181-188
    • /
    • 2006
  • Operation parameters for large scale industrial facility such as iron making plant are carefully selected through elaborate tests and monitoring rather than through a mathematical modeling. One of the recent progresses for better energy utilization in iron ore sintering process is the distribution pattern of fuel inside a macro particle which is formed with fines of iron ore, coke and limestone. Results of model tests which have been used as a basis for the improved operation in the field are introduced and a theoretical modeling study is presented to supplement the experiment-based approach with fundamental arguments of physical modeling, which enables predictive computation beyond the limited region of tests and adjustment. A single fuel particle model along with one-dimensional bed combustion model of solid particles are utilized, and thermal processes of combustion and heat transfer are found to be dominant consideration in the discussions of productivity and energy utilization in the sintering process.

  • PDF

Modeling of Biodiesel Combustion on Compression Ignition Engine (바이오디젤 엔진의 연소과정 모델링)

  • Choi, Mingi;Cha, Junepyo;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.309-310
    • /
    • 2012
  • Modeling of biodiesel combustion on compression ignition engine was conducted by using the KIVA3v-Release 2 code coupled with Chemkin chemistry solver2. In order to calculate the chemical kinetics of combustion of biodiesel, a reduced mechanism of methyl decanoate and methyl 9-decanoate was used. It is composed of 123 species and 394 reactions. Also, the experiments were performed on a single-cylinder engine. The simulation results agreed well with experiments results. And soot concentrations of biodiesel were lower than those of diesel.

  • PDF

Investigation of the Knocking Phenomenon in SI Engines (가솔린 엔진에서의 노킹 현상 해석)

  • Min, Kyoung-Doug
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.29-35
    • /
    • 2000
  • Knock in SI engines causes physical damage to the piston and combustion chamber and lowers the thermal efficiency. The increase in compression ratio which can improve the thermal efficiency and engine performance has been limited by engine knock. So the need of making clear the knocking phenomenon has increased. This paper reviews the methods of knock detection, characterization and prediction of knock with the reduced chemical kinetic modeling.

  • PDF

A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed (소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구)

  • Yang, Won;Yang, Kwang-Hcok;Choi, Sang-Min;Choi, Eung-Soo;Ri, Deok-Won;Kim, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.141-148
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a few basic analysis and thermo-gravimetric analysis. It was found that coke has a higher reactivity than anthracite due to the difference of surface area and density. Those characteristics are reflected to the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion, which implies the further investigation should be performed for obtaining optimal combustion conditions in the sintering bed.

  • PDF

An Analytic Method of Combustion Characteristics in a Single-Cylinder Type Disel Engine (단기통형 디젤기관의 연소특성 분석방법)

  • Cho, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.5-17
    • /
    • 1992
  • To develop an analytic method of combustion characteristics in a small sized and single cylinder type diesel engine for a power tiller, 1) the theoritical analysis of combustion gas in engine cylinder was performed based on thermoscience and 2) the computer program which could be used to calculate those values of the apparent burning rate, the heat loss, the gas temperature and the fuel-air equivalence ratio with the experimental cylinder pressure data, was developed. This method would provide the practical and quantative data for the diesel combustion process. Through the use of this method, following details would be obtained: 1) the application in the modeling of combustion process without detail knowledeg of combustion process, 2) the basis for the complete modeling of diesel engine, and 3) the basic information for the design of combustion chamber by the prediction of engine performance.

  • PDF

A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed (소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구)

  • Yang, Won;Yang, Kwang-Heok;Choi, Eung-Soo;Ri, Deog-Won;Kim, Sung-Man;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.30-37
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal - coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a set of basic analysis and thermo-gravimetric analysis. Coke has a higher reactivity than anthracite due to the difference of surface area and density, and these characteristics are reflected in the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion.

  • PDF

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.