• 제목/요약/키워드: Combustion Liner

검색결과 66건 처리시간 0.023초

Analysis of Ring Pack Lubrication (다중 피스톤 링계의 피스톤 링 윤활 해석)

  • 이재선;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.232-239
    • /
    • 1999
  • Generally quantity of supply oil for piston ring lubrication in an internal combustion engine may be insufficient to fill the entire volume formed in the clearance between piston ring and cylinder liner. Thus oil starvation condition should be considered for the analysis of piston ring lubrication. In order to reasonably estimate amount of oil left on the cylinder liner, adequate boundary condition should be adapted for the analysis of ring pack lubrication. In this analysis of ring pack lubrication of an internal combustion engine, oil starvation and open-end boundary conditions are considered at inlet and outlet of piston rings. It is revealed that piston rings are operated under oil starvation in most operating cycle and the result with these conditions are quite different from that with fully-flooded assumption.

  • PDF

Design Methodology of an Annular Combustor for Micro Gas Turbines (마이크로가스터빈용 환형연소기 설계 기법)

  • Cho, Ju Hyeong
    • Journal of the Korean Society of Combustion
    • /
    • 제19권4호
    • /
    • pp.21-27
    • /
    • 2014
  • MGT (micro gas turbines) have been gaining particular attentions with a variety of commercial and military applications due to their advantages such as compact size, simple operability, easy maintenance, and low emissions. This study deals with development processes of an annular combustor applied to MGT. Preliminary design methodologies are used to size the main components of the combustor. Key design features such as liner temperatures and pressure losses are evaluated. Results show that the estimated liner temperatures are within acceptable range. Dominant factors for pressure losses are estimated to be air admission holes and burner swirlers.

Analysis of Ring Pack Lubrication Considering Oil Transport (오일 이송을 고려한 다중 피스톤 링계의 피스톤 링 윤활 해석)

  • 이재선;한동철
    • Tribology and Lubricants
    • /
    • 제15권3호
    • /
    • pp.233-239
    • /
    • 1999
  • Generally quantity of supply oil for piston ring lubrication in an internal combustion engine may be insufficient to fill the entire volume formed in the clearance between piston ring and cylinder liner. Thus oil starvation condition should be considered for the analysis of piston ring lubrication. In order to reasonably estimate amount of oil left on the cylinder liner, adequate boundary condition should be adapted for the analysis of ring pack lubrication. In this analysis of ring pack lubrication of an internal combustion engine, oil starvation and open-end boundary conditions are considered at inlet and outlet of piston rings. It is revealed that piston rings are operated under oil starvation in most operating cycle and the result with these conditions are quite different from that with fully-flooded assumption.

Numerical Analysis of Combustion Characteristics during Combustion Mode Change of a Low NOx Utility Gas Turbine (발전용 저 NOx 가스터빈의 연소모드 변환시기의 연소특성 전산해석)

  • Jeong, Jai-Mo;Chung, Jae-Hwa;Park, Jung-Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권6호
    • /
    • pp.127-134
    • /
    • 2004
  • Three-dimensional numerical investigations are carried out to understand the combustion characteristics inside a DLN(dry low NOx) utility gas turbine combustor during the combustion mode change period by applying transient fuel flow rates in fuel supply system as numerical boundary conditions. The numerical solution domain comprises the complex combustor liner including cooling air holes, three types of fuel nozzles, a swirl vane, and a venturi. Detailed three-dimensional flow and temperature fields before and after combustion mode changeover have been analyzed. The results may be useful for further studies on the unfavorable phenomena, such as flashback or thermal damage of combustor parts when the combustion mode changes.

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제30권11호
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Effects of Fuel Injection Conditions on Combustion Characteristics of a DI Diesel Engine (직접분사식 디젤 엔진에서 연료 분사 인자에 따른 연소 특성)

  • Kook, Sang-Hoon;Yu, Jun;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.33-38
    • /
    • 2002
  • An optical single cylinder diesel engine equipped with a common-rail injection system has been built to investigate diesel combustion and emission characteristics. Three optical widows (piston crown quartz for bottom view of the cylinder, upper piston quartz for allowing laser sheet and liner quartz for side view) have been placed in the optical engine to visualize spray characteristics and combustion process inside the cylinder. Before doing further research using various optical diagnostics with the optical engine, fundamental combustion experiments and flame visualization incorporating a high speed motion analyser have been carried out with a wide range of engine operating conditions.

  • PDF

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

An experimental study for preliminary design of gas turbine combustor (가스터빈 연소기 기본형상 결정을 위한 성능실험)

  • An, Guk-Yeong;Kim, Han-Seok;Jo, Eun-Seong;Bae, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제22권6호
    • /
    • pp.840-848
    • /
    • 1998
  • The preliminary design and performance test were carried out for determining dimensions of gas turbine combustor. The combustor design program was developed and applied to design our combustor, and the specific dimensions for swirler, dome and liner holes were determined by the semiempirical manner. Based on the first performance test data, the swirl angle governing the combustion characteristics of primary combustor zone was determined as 40 deg.. Using the second performance test data, the swirler dimensions were readjusted by 24 mm i.d., 34 mm o.d., and swirl angle of 45 deg.. The geometry of liner holes were determined by considering the flame stability and recirculation zone size. It was found that flame can be more easily stabilized by adjusting the swirler dimensions rather than liner holes. The geometry of swirler and liner holes were readjusted by using the final performance test data with dilution holes. Also, the combustor performance and emission characteristics were evaluated by analysis of exhaust gases.

DESIGN OF ANNULAR REVERSIBLE COMBUSTOR WITH 3 DIMENSIONAL CFD ANALYSIS (3차원 CFD해석을 이용한 환형 역류형 연소기설계)

  • Na, S.K.;Shim, J.K.;Park, H.H.;Lee, S.J.;Chen, S.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.247-251
    • /
    • 2010
  • It is very difficult to understand and estimate the heat transfer and flow characteristics in the combustor, which is one of main components in the Auxiliary Power Unit (APU), because its flow filed has very complex structure. In this paper, specified is characteristics of injection and flow through different air goles in the liner, which consist of large circular holes film cooling holes, and tangential air swirl holes. The durability of the liner depends on whether the surface of the liner is exposed to the hot gas over 1000 $^{\circ}C$ of a temperature or net. It is proved that the locations of hot spots estimated from the calculation using CFD are matched well with that from the test. In this study, CFD simulations were performed to examine the heat transfer and temperature distributions in and about a liner wall with film cooling on the wall. This computational study is based on the ensemble average continuity, compressible Navier-Stokes, energy, and PDF combustion equations closed by the standard $k-{\varepsilon}$ turbulence model with standard wall functions for the gas phase and the Fourier equations for conduction in the solid phase.

  • PDF