• Title/Summary/Keyword: Combustion Dynamics

Search Result 310, Processing Time 0.023 seconds

Potential of MHD in Improving the Performance of and Generating Power in Scramjets (MHD의 스크램제트 성능 개선과 전력 생산 잠재력)

  • Parent, Bernard;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.310-313
    • /
    • 2008
  • Magnetohydrodynamics (MHD) devices have received considerable attention in recent years as a means to either improve the propulsive characteristics of hypersonic cruise missiles or as a means to generate power at low cost in drag and weight aboard scramjet powered vehicles. Based on more complete physical models than previously used, it is here argued that the use of MHD is not valuable in improving the performance of hypersonic propulsion systems through prevention of boundary layer separation or power bypass. This is due to the inevitable high amount of Joule heating accompanying MHD flow control having considerable undesired adverse effects on the engine performance. On the other hand, preliminary estimates indicate that MHD is likely to succeed in generating high amounts of power with little additional drag to feed megawatt-class energy weapons on-board scramjet engines.

  • PDF

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame (메탄/공기 예혼합화염의 동역학적 거동에 대한 정상초음파의 교반 효과)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.318-323
    • /
    • 2012
  • This study is conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame is caught by high-speed schlieren images, through which flame front and local flame velocity are analyzed and obtained, too. It is revealed that the propagation velocity with ultrasonic standing wave is larger than the case without excitation except around the flammability limits. Also, vertical locations of distortions and depth of dents of the front are constant, unless the ultrasonic standing wave characteristics are not changed.

  • PDF

Numerical Study for Kerosene/LOx Supercritical Mixing Characteristics of Swirl Injector (동축와류형 분사기의 케로신/액체산소 초임계 혼합특성 수치적 연구)

  • Heo, Jun-Young;Kim, Kuk-Jin;Sung, Hong-Gye;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.103-108
    • /
    • 2011
  • The turbulent mixing of a kerosene/liquid oxygen coaxial swirl injector under supercritical pressures have been numerically investigated. Kerosene surrogate models are proposed for the kerosene thermodynamic properties. Turbulent numerical model is based on LES(Large Eddy Simulation) with real-fluid transport and thermodynamics over the entire pressure range; Soave modification of Redlich-Kwong equation of state, Chung's model for viscosity/conductivity, and Fuller's theorem for diffusivity to take account Takahashi's compressible effect. The effect of operating pressure on thermodynamic properties and mixing dynamics inside an injector and a combustion chamber are investigated. Power spectral densities of pressure fluctuations in the injector under various chamber pressure are analyzed.

  • PDF

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

A Study on the Application Scheme of Fire Identification Considering the Heat Release Rate Characteristics of Inflammable Material (가연물의 발열량 특성을 고려한 화재감식 적용방안에 관한 연구)

  • Kang, Jung-Ki;Oh, Jin-Hee;You, Woo-Jun;Ryou, Hong-Sun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.52-57
    • /
    • 2014
  • The present study suggests the fundamental method for the prediction time of the fire origin by analyzing the combustion phenomenon of inflammable material in the building structure. The heat release rate (HRR) with time variant is evaluated for the interphone as a inflammable material, which is opted from the fire incidents in the stairwell. the fire dynamics simulator (FDS ver. 6.1) is applied in order to analyze the difference of the smoke inflow time to the downstair from the fire event area with various fire pattern. The results show that the maximum inflow time difference for the case of the interphone made from ABS materials is about 4.93 times with the input conditions of heat flux values and the environment in the FDS for the fixed stairwell which composed of total volume $291.3m^3$, floorage $23.3m^2$ and the height of each floor 2.5 m. This research can be practical information for the application method of simulation scheme with experimental data to the fire Identification.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Analysis of Rollover Angle According to Arrangement of Main Parts of Electric Tractor Using Dynamic Simulation (시뮬레이션을 이용한 전기 트랙터 주요 부품 배치에 따른 전도각 분석)

  • Jin Ho Son;Yeong Su Kim;Yu Shin Ha
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.77-84
    • /
    • 2023
  • In the agricultural sector, power sources are being developed that use alternative energy sources such as electric tractors and hydrogen tractors, away from internal combustion engine tractors. As parts such as engines and transmissions used in conventional internal combustion engine tractors are replaced with motors and batteries, the center of gravity changes, and thus the risk of rollover should be considered. The purpose of this study is to analyze the overturn angle of the main parts of the electric tractor through dynamic simulation to minimize the overturn accident and to derive the optimal arrangement of parts to improve stability. A total of nine dynamics simulations were conducted by designing three components of the PTO motor, drive motor and the battery pack, and three factors of the arrangement method. As a result of the experiment, it was confirmed that Type3 Level3, in which the drive motor and the PTO motor are located at the front and rear of the tractor, and two battery packs are located in the middle of the tractor, has a high rollover angle. As a result of this study, the stability increased as the center of gravity was placed backward and located below. Future research needs to be done to find the optimal location of parts considering their performance and placement efficiency.

Numerical Study on Atmospheric Dispersion and Fire Possibility in Toluene Leakage (톨루엔 누출 시 대기확산 및 화재가능성에 관한 수치해석 연구)

  • Ko, Jae Sun;Kim, Joo-Seok
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • This study examined the risk of accidents when handling hazardous materials in hazardous materials storage facilities without safety facilities. In the case of illegal dangerous cargo containers, the burning rate is very fast in the case of fire, which leads to explosions, that are damaging and difficult to control. In addition, accidents that occur in flammable liquid hazardous materials are caused mostly by accidents that occur in the space due to leakage. Therefore, the variables that affect these accidents were derived and the influence of these variables was investigated. Numerical and computational fluid dynamics programs were used to obtain the following final results. First, when a flammable liquid leaks into a specific space, it is influenced by temperature and relative humidity until a certain concentration (lower limit of combustion) is reached. In the case of temperature, it was found that the reaching time was shorter than the flash point In addition, the effect of variables on pool fire accidents of leakage tanks is somewhat different, but the variables that have the largest influence are the wind speed. Therefore, it is expected that the results of this study will be used as basic data for similar numerical analysis and it will provide useful numerical information about the accidental leakage of hazardous materials under various research conditions.

Analysis of the Gas Feed Distribution at the Gas Sweetening Absorber Using CFD (CFD를 활용한 산성가스 처리공정용 흡수탑 가스분산성 향상 연구)

  • Lee, Ji Hyun;Shim, Sung-Bo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.314-320
    • /
    • 2014
  • Regarding the design of the gas sweetening absorber, the gas distribution analysis for the increase of the sour gas removal and reduction of the tower height is very important research topics. Recently, regarding the $CO_2$ capture technology which is a promising option for the reduction of the greenhouse gas (GHG), the need for the gas distribution improvement is increased as the gas treating capacity increases. In this paper, we have investigated the sour gas distribution in the absorber using CFD (Computational Fluid Dynamics) based on 10 MW post-combustion $CO_2$ capture plant installed in Boryeong power station, Korea Midland Power company. For this purpose, we suggested the three possible technology options (splash plate, spiral gas line and U-tube) for the gas distribution enhancement and compared the effect of the each cases. The result showed that the U-tube installed in the absorber increase the gas distribution about 30% compared to the base case, while the delta P increasement was about 10%. From these results, it was found that the U-tube installation is an effective technology option for the gas distribution enhancement in the gas sweetening absorber.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.