• Title/Summary/Keyword: Combustion Dynamic Characteristics

Search Result 143, Processing Time 0.03 seconds

Measurement of Calorific Value Using Flame Calorimeter (전자 소자를 이용한 연소열 측정)

  • Lim, Ki-Won;Jun, Jin-Young;Lee, Byeong-Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • Calorific value of mixed gas, like liquefied natural gas (LNG), is strongly depends on its compositions which are affected by the mining place and producing time. The variation in calorific value have an direct influence on the combustion characteristics and performances of boiler, burner, vehicle, power plants etc. Thus, developing experimental method to measure exact calorific value is becoming an issue in the related industrial fields. Flame calorimeter is developed to get calorific value at the dynamic equilibrium state using electric substitution method. Refrigerant-11 carries heat from combustor and/or heater to the Peltier elements which pumped it out to the cooling water. It is found out that error in the measured calorific value of methane is 2.86% compared with the theoretical one. Developed design technique and the experimental data will be applied to design the national standard gas calorific value measuring apparatus.

Analysis of the Burning Rate of Solid Propellant Accounting for the Evaporation on the Surface (표면 증발을 고려한 고체추진제의 연소율 해석)

  • 이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • The burning rate of solid propellant is one of the key parameter associated with the dynamic characteristics of combustion and the combustion performances. In the AP propellants, the evaporation on the reacting surface as well as the decomposition of the propellant is of great importance in determining the overall burning rate. In this study, a theoretical analysis was conducted to obtain the expression for burning rate in the steady state combustion with the energy and species equations in the condensed phase when the radiative heat flux partially contributes to the total heat transfer to the propellant surface.

  • PDF

Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor (난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF

Thermal Characteristics of Polypropylene in Combustion Reaction Using TGA (TGA를 이용한 폴리프로필렌의 연소반응에서의 열적 특성 연구)

  • Kang, Yun-Jin;Seo, Su-Eun;Seo, Gyu-Suk;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.4
    • /
    • pp.111-120
    • /
    • 2008
  • The combustion reaction of polypropylene was investigated using a thermogravimetric technique under an air atmosphere condition at several heating rates from 10 to $50^{\circ}C/min$. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative were analyzed by a variety of analytical methods such as Kissinger, Friedman, Freeman-Carroll, Chatterjee-Conrad, Ozawa and Coats-Redfern methods. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because there are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis.

Flame Transfer Function Modeling in a Gas Turbine Partially-premixed Combustor with Equivalence Ratio Modulation (가스터빈 부분 예혼합 연소기에서 당량비 섭동에 대한 화염전달함수 모델링)

  • Kim, Jihwan;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • This study has investigated the relationship between heat release fluctuations and the flow perturbations in a partially premixed gas turbine combustor using a commercial CFD code. Special focus of the current work is placed on the effect of equivalence ratio on the flame dynamics in a partially-premixed system. As the first step for this combustion dynamics study in the non-perfectly premixed combustor, flame behaviors are modeled and then compared with measured results under both steady and unsteady conditions. The calculated results of the flame transfer function with equivalence ratio fluctuation are found to well capture the main qualitative characteristics of the combustion dynamics for the partially-premixed flames.

Experimental Study for NOx Reduction Using Reburning and Numerical Study with FLUENT (재연소를 이용한 NOx 저감의 실험적 연구 및 FLUENT를 이용한 수치적 연구)

  • Kim, Jae-Kwan;Kim, Hak-Young;Baek, Seung-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1967-1972
    • /
    • 2008
  • Reburning is an efficient combustion technology to reduce nitrogen oxide by injecting hydro-carbon fuel to the downstream of the main combustion. In this paper LPG has been used not only as main fuel but also as reburn fuel and air was used as an oxidizer with 15kW swirl burner. Experimental studies have been done to evaluate effect of reburning for NOx reduction. Also to examine the effect of the amount of burnout air for complete combustion by reburn fuel on NOx reduction, test was conducted by reducing the amount of burnout air. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT 6.3 to simulate experimental results and investigate the thermo-chemical characteristics. An evaluation of reaction models for swirl burner has been carried out for propane-air with two step finite-rate eddy-dissipation model in FLUENT.

  • PDF

Dynamics of Coaxial Swirl Injectors in Combustion Environment (연소 조건하의 동축형 분사기의 동적 특성 고찰)

  • Seo Seonghyeon;Han Yeoung-Min;Lee Kwang-Jin;Kim Seung-Han;Seol Woo-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.282-287
    • /
    • 2004
  • Unielement combustion tests were conducted using coaxial bi-swirl injectors. Major experimental parameters were a recess length and a fuel-side swirl chamber. Combustion efficiency mainly depends on a mixing mechanism for the present coaxial swirl injectors. Low-frequency pressure excitations around 200Hz were observed for all injectors. However, dynamic behaviors considerably differ for an external and an internal mixing case controlled by a recess length. The internal mixing induces mixture to be biased at a specific frequency in a mass flow rate, which results in a relatively high amplitude of pressure fluctuations but results for the external mixing case show that fuel and oxidizer mixture flow carries more complicated, multiple wave characteristics due to broad mixing region as well as disintegration and merging phenomena of propellant films.

  • PDF

AN ANALYTICAL STUDY ON THE DYNAMIC CHARACTERISTICS OF A LIQUID PROPULSION SYSTEM

  • Lee Han Ju;Lim Seok Hee;Jung Dong Ho;Kim Yong Wook;Oh Seung Hyub
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.325-327
    • /
    • 2004
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. Analysis on the low frequency dynamic characteristics on the liquid propulsion system with staged combustion cycle engine system was performed as a preliminary study on the longitudinal instability analysis.

  • PDF

Combustion Stability Evaluation of 30 ton-f Class Liquid Rocket Engine Combustor (30톤급 엑체로켓엔진 연소기의 연소안정성 평가)

  • Lim, Byoung-Jik;Lee, Kwang-Jin;Kim, Mun-Ki;Kang, Dong-Hyuk;Yang, Seung-Ho;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.163-167
    • /
    • 2008
  • This paper presents pressure fluctuation characteristics of a 30 ton-f class liquid rocket engine combustor. Combustion stability of the combustor was evaluated using the results 46 firing tests performed with a varying O/F ratio and chamber pressure. The RMS value of pressure fluctuation during the steady state combustion was less than 2.6% of the static chamber pressure, demonstrating static stability of the combustion phenomenon. The decay time of pressure fluctuation caused by forced disturbance of a pulse gun was found to be less than 3.5 msec verifying dynamic stability of the combustor.

  • PDF

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector with Acoustic Excitation by Varying Momentum Flux Ratio (운동량 플럭스 비의 변화에 따른 기체 중심 스월 동축형 분사기의 기체 가진 동특성 연구)

  • Lee, Jungho;Park, Gujeong;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.168-174
    • /
    • 2015
  • Combustion instability is critical problem in developing liquid rocket engine. There have been many efforts to solve this problem. In this study, the method was sought through the injector as part of these efforts to suppress combustion instability. If the injector can suppress the disturbance coming from the supply line as a kind of buffer it will serve to reduce combustion instability. Especially we target at gas propellant oscillation in gas-centered swirl coaxial injector. The phenomenon is simulated with acoustic excitation of speaker. The film thickness response at injector exit was measured by using a liquid film electrode. Also the response of spray to the disturbance was observed by high-speed photography. Gas-liquid momentum flux ratio and the frequency of feeding gas oscillation were changed to investigate the effect of these experimental parameters. The trend of response by varying these parameters and the cause of weak points was studied to suggest the better design of injector for suppressing combustion instability.