• Title/Summary/Keyword: Combustible materials

Search Result 164, Processing Time 0.029 seconds

Fire-Protective Coating for Polymer Construction Materials using Two-dimensional Nanomaterials (2차원 나노소재를 활용한 고분자 건축자재의 난연코팅기술 개발)

  • Kim, Hanim
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.183-190
    • /
    • 2024
  • An environmentally-friendly nanocoating method that effectively adds flame retardant(FR) and gas shielding properties to combustible polymeric construction materials such as flexible polyurethane (PU) foam was studied. Naturally-driven two-dimensional(2D) nanomaterials such as graphene oxide (GO) can exhibit liquid crystalline (LC) properties in aqueous solutions, enabling uniform coatings on the various substrates including 3D-porous foams. LC phase-assisted coating serves as 3D-scaffold, facilitating the introduction of small molecules having antioxidant capabilities such as dopamine which is to form uniformly stacked FR coating. Additionally, the structural characteristics of the 2D-materials can effectively hinder the migration of toxic gases and flammable substances in the gas phase generated during combustion. This LC phase flame retardant coating technology could be a new approach to provide environmentally friendly and effective flame retardant and gas barrier properties to various types of polymeric materials.

Combustive Characteristic and Toxic Gases Generation of Interior Materials -The focus for resist-carpet, resist-after-tretment plywood, sofa leather- (내장재의 연소 및 독성가스 발생 특성 -방염 카페트, 방염 후처리 합판, 쇼파 내자를 중심으로-)

  • 김일수;류경옥
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.43-59
    • /
    • 1998
  • It was studied a compared estimation of the fire risk of the three kinds of the interior materials, such as a resist carpet, a resist-after-treatment plywood and sofa leather. Toxic gases, CO, CO2, NOx, SO2, HCN, HCI were detected during the combustion of the samples. A resist-carpet was more combustible than the resist-after-treatment plywood and sofa leather in the combustion characteristics and has a blow-up-combustion of combustion in all the samples. The generation of CO reached the lethal doses in minute after the combustion was begun. NOx and So2 were detected not more than each of the lethal doses, while HCN was detected in the carpet 20.6 times than the sofa leather, and 4.6 times than the resist-after-treatment plywood. HCI was detected in the carpet 4.48 times than the sofa leather and 2.47 times than the resist-after-treatment plywood. It is conclusion that the carpet was the highest in the fire risk among the three kinds of the interior materials.

  • PDF

Performance Analysis of Off-Gas/Syngas Combustor for Thermal Management of High Temperature Fuel Cell System (고온형 연료전지 열관리를 위한 배기가스 연소기 성능시험)

  • Lee, Sang-Min;Lee, Youn-Hwa;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2010
  • Anode off-gas of high temperature fuel cell still contains combustible components such as hydrogen, carbon monoxide and hydrocarbon. In this study, a catalytic combustor has been applied to the high temperature fuel cell so that the combustion of anode-off gas can be boosted up. Since the performance of catalytic combustor directly depends on the combustion catalyst, this study is designed to perform the experimental investigation on the combustion characteristics of the three commercial catalysts with a different composition. Screening tests with three catalysts are preceded before the performance examination since it is necessary to determine the most suitable catalyst for design configuration of the catalytic combustor. The performance analysis shows that methane conversion rate strongly depends on gas hourly space velocity (GHSV) as well as inlet gas temperature. Additionally, the GSHV optimization results show that the optimum GHSV will be in the range between 18,000 $hr^{-1}$ and 36,000 $hr^{-1}$. It is also shown that the minimum inlet temperature of catalytic reaction of methane is from $100^{\circ}C$ to $150^{\circ}C$.

Analysis on the Fire Accident of Vehicle Due to Damage of the Vehicle's Electrical Components (차량 전장부품 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.32-38
    • /
    • 2015
  • In this paper, we analyzed the vehicle fire accidents due to damage of vehicle's electrical components, which is applied to a vehicle. In recent development of electrical components technology, approximately 40% of vehicle manufacturing parts have applied electronic circuit technology. Phenomenon such deterioration of insulating performance or electric breakdown on the vehicle's electrical components and printed circuit boards(PCBs) resulted from moisture, contamination and aging due to repetitive operations, lead to the vehicle fire. Therefore, the application of electrical components with adequate electric capacity for vehicle and usage of molding techniques using a non-combustible materials to shut off the oxygen should be applied in order to prevent vehicle fire due to damage of the electrical components and PCBs.

Prediction Method for Fire Load Prediction of Bedding and Bags Using a Standard Normal Distribution (정규분포를 활용한 이불과 가방에 대한 화재 하중 예측 방안 연구)

  • Kim, Hyun-Do;Nam, Dong-Koon;Cho, Sung-Woo
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2015
  • This study suggests basic data for fire-resistant compartments to prevent fires from spreading in a traditional markets. As representative combustible goods handled in traditional markets, bedding and bags were chosen. The fire loads could be calculated using the porosity of the materials based on a standard normal distribution. The bedding and bag porosity were 98.7%, and 94.39%, respectively. The the fire load of bedding is $29.9kg/m^2$, and that of bags is $65.61kg/m^2$.

Development of Independent Sprinkler for Fire Safety (소방안전을 위한 독립 스프링클러 개발)

  • Yun, Hae-Yong;Kim, Seon-Yeop;Kim, Ho-Chan;Park, In-Beck
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2017
  • Sprinklers are a necessary device for the early suppression of fires to prevent large fires. The installation has been obligatory for certain buildings recently through the digestion method. In an aging building, it is difficult to find sprinklers, because of their significant cost, long installation times, and they require installation by experts. That is why we are able to install all, was designed with enough independent integrated sprinklers with fire-extinguishing capabilities. The designed sprinklers are fitted with a conventional sprinkler head in a container of 20cm * 20cm * 10cm. Inside the container and potassium carbonate, which warms the rubber material and the plate line by pressing the potassium carbonate, the line weight is a 5kg pressing plate at the entrance at the pressure of 0.5Mpa when operating. The glass sprinkler valve blocking the entrance at about $68^{\circ}C$ is operated open. At this time, the potassium out of the digestive fire to combustible materials and heat off a chain reaction.

Determination of limiting temperatures for H-section and hollow section columns

  • Kwon, In-Kyu;Kwon, Young-Bong
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.309-325
    • /
    • 2012
  • The risk of progressive collapse in steel framed buildings under fire conditions is gradually rising due to the increasing use of combustible materials. The fire resistance of such steel framed buildings is evaluated by fire tests. Recently, the application of performance based fire engineering makes it easier to evaluate the fire resistance owing to various engineering techniques and fire science. The fire resistance of steel structural members can be evaluated by the comparison of the limiting temperatures and maximum temperatures of structural steel members. The limiting temperature is derived at the moment that the failure of structural member results from the rise in temperature and the maximum temperature is calculated by using a heat transfer analysis. To obtain the limiting temperatures for structural steel of grades SS400 and SM490 in Korea, tensile strength tests of coupons at high temperature were conducted. The limiting temperatures obtained by the tensile coupon tests were compared with the limiting temperatures reported in the literature and the results of column fire tests under four types of loading with different load ratios. Simple limiting temperature formulas for SS400 and SM490 steel based on the fire tests of the tensile coupons are proposed. The limiting temperature predictions using the proposed formulas were proven to be conservative in comparison with those obtained from H-section and hollow section column fire tests.

A Study on Problems of High-rise Building Fires in Korea and the Basic Directions for Fire Safety of High-rise Building Design (우리나라 고층건축화재의 문제점과 그 대책의 기본방향에 관한 연구)

  • 이강훈
    • Fire Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-26
    • /
    • 1990
  • Building become higher. larger and more complex than ever before, showing abrupt changes in building structures. forms and mechanical systems. Likewise hazads of fire and the scale of fire losses become more and more greater. Therefore. considerations for fire safety take up great portion of the building design process. In this study, problems of high-rise building fires and basic directions for fire safety of high-rise building design were studied through the statistical analysis of 138 fire cases. The results of this study are summarized as follows : ·Most of the fires in high-rise building occur on the low floors and the fire frequencies are very low on the upper floors. Fire casualties are liable to be more on the upper floors than on tile floor of fire origin. ·The important causes of evacuation failures were analyzed as being late in escape and lack of stairwell enclosures. ·The main cause of vertical fire spread is lack of stairwell enclosures. However, the fire spreads mainly through the enterior windows in apartment houses. The combustible materials in buildings act on as the major factors of horizontal fire spread and the improper fire doors play role of another the critical causes. ·The basic directions for fire safety of high-rise building design put much stress firstly on the compartmentation of the buildings effectively performing the provision of safe escape routes and the safe refuse places in buildings.

  • PDF

Numerical study of a coating with pigment to selectively reflect the thermal radiation from fire (화염 열복사의 파장별 선택적 반사를 위한 도료 코팅에 대한 수치적 연구)

  • Byeon, Do-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 1998
  • The infrared reflection coatings with pigment can be used to protect the surfaces of combustible materials exposed to fire. To obtain high reflectivities in the infrared range (0.5-10.mu.m) important to fire, several dielectric pigments, such as titanium dioxide, iron oxide, and silicon, can be synthesized to polymer coatings. The theoretical analysis shows that the coating design with particles diameter in the 1.5 to 2.5.mu.m range and volume fraction in the 0.1 to 0.2 range is estimated to be optimal. In the analysis of the radiation, the dependent scattering, absorption by polymeric binder, and the internal interface reflection are considered. In addition, the temperature distribution in the semi-transparent coating layer and an opaque substrate (PMMA) is also presented.

Experimental Study on Making Databases for Fire Resistant Steel at High Temperature (내화강재의 고온특성 데이터베이스 구축 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • Fire at building can occur enormous damages to life, properties, and environment and the risk of fire breakout is going up higher because of application of combustible materials than before. Therefore, the steel industries are trying to develop fire resistant steel in order to sustain the load bearing capacity of steel structures during fire situation. In this paper, to give the basis data-bases for evaluation of structural stability of steel structures applied fire resistant steel, FR 490, the tests of mechanical and thermal properties at high temperature were conducted and the comparisons are done with the SM 490 that has the same mechanical one.