Auto ignition characteristic is an important factor for handling combustible substance and fire prevention. This research studied about auto ignition characteristic and activation energy of Ethylene Glycol (EG) and Diethylene Glycol (DEG) by using ASTM D2155 type ignition temperature measuring apparatus. As the auto ignition temperatures, it was possible to get $434^{\circ}C$ for EG within sample amount range of $75{\sim}160{\mu}l$ and $387^{\circ}C$ for DEG within sample amount range of $130{\sim}150{\mu}l$. Also, it was possible to get $579^{\circ}C$ and $569^{\circ}C$ as instantaneous ignition temperatures with sample amount of $140{\mu}l$ for EG and DEG respectively. By using least square method from Semenov equation on measured ignition temperature and ignition delay time from this study, it was possible to calculate activation energy of EG as 25.41 Kcal/mol and DEG as 14.07 Kcal/mol. Therefore, it was possible to claim that DEG has more risk of auto ignition since the auto ignition temperature, instantaneous ignition temperature and activation energy of DEG is lower than EG.
We investigated experimentally the properties of dust explosion through lycopodium particle clouds in a duct to provide the fundamental knowledge. Propagating dust flames in the vertical duct of 120 cm height and 12 cm square cross-section were observed by digital video camera and flame front is visualized using by PIV(Particle Image Velocimetry) system. As the result, when the same average dust concentration existed in the vertical duct, downward flame propagation was faster than the upward flame propagation, its rate increased with dust concentration in 300g/$m^3$. Post flames were caused by the ignition of unburned particles which flowed into the rear region of flame from passage between flame and duct wall, and they generated regardless of duct condition. Also, it was found that appearance frequency of post flames during dust flame propagations increased with the increase of dust concentration.
Smoke from fire is a mixture of combustion gases and particles which include micro-droplets formed from condensed organic vapors and carbonaceous agglomerates. The inhalation of smoke particles causes adverse health effects, and it is prerequisite for the hazard and risk analysis of the smoke particles to know how they behaviour in the respiratory tract. The characteristics of the absorption and adsorption of toxic gases and the amount and location of the particle deposition within the respiratory tract that determine the adverse health effects are related to the morphology and the size distribution of smoke particles. In the present work, as a preliminary study for the adverse health effects of smoke particles, the morphologies of the smoke particles from combustible materials were investigated for each fire stage: smouldering, well-ventilated flaming, small under-ventilated flaming, fully-developed under-ventilated fire. The steady-state tube furnace method given in ISO/TS 19700 was used for the generation of smoke particles. The fire stages were controlled by changing furnace temperature and equivalent ratio. The morphologies were analyzed by using Transmission Electron Microscope (Bio-TEM) by collecting the particles on TEM grids put on each stage of a cascade impactor.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.2
no.3
/
pp.165-174
/
2004
In order to simultaneously vitrify the ion exchange resin(IER) and combustible dry active waste(DAW) generated from Korean nuclear power plants, a vitrification pilot test was conducted using an induction cold crucible melter(CCM) . The energy necessary for startup of the glass using a Ti-ring was evaluated as about 290 kWh. The power supplied from a high frequency generator to melt the glass properly was ranged from 160 to 190 kW without any interruption. When the mixture of the IER and DAW was fed into the CCM, the concentration of CO was lowered up to 1/40 compared to feeding the IER solely. It may be caused by the DAW which can produce about 1.8 times higher heat compared to the IER. When the swelling phenomenon occurred in the glass melt, the concentration of $NO_2$, oxidizing gas, was higher than NO, reducing gas. Total feed amounts of the IER and DAW were 368 and 751 kg, respectively. And then, about 74 of volume reduction factor was achieved.
Candle fires do not occur frequently, but can easily result in death. In this study, the thermal characteristics of candles and conditions and debris of candle fires were investigated to determine the causes of candle fires. The rates of decrease in weight of 10 candles were measured and found to be between 2.6 g/h and 6.7 g/h. Most candle fires are caused by the ignitiong of combustible materials close to them. The temperature near a candle ranges from about $200^{\circ}C$ to $400^{\circ}C$ at a distance of 1 cm and low ignition temperature materials such as papers can easily catch fire. The melting temperature of candles ranges between $50^{\circ}C$ and $70^{\circ}C$ and their major chemical components are fatty acids and normal hydrocarbons (over C20). Using pretreatment conditions involving the use of activated charcoal strips at $150^{\circ}C$ for 16 hours, the fire debris including candle residues were analyzed using a Gas-chromatograph/Mass-spectrometer (GC/MS).
The fire accident is a representative type of disaster that can largely impact on business. Therefore, precautionary measures and rapid initial response is very important when a disaster occurs. The storage of porous combustibles is inevitable in coal yard, plywood processing industry, and others that are currently operating. Initial fire fighting of fire and identifying the ignition point in such a porous combustible storage space are so difficult that if the initial response is failed, being led to deep-seated fire, surface fire is likely to result in secondary damage. In addition, deep-seated fire can cause personal injuries and property damage due to a large amount of toxic gases and reignition. Therefore damage reduction measures is required around the storage space to handle a porous flammable. Improving the penetration performance of the concentration of the surfactant is carried out as underlying study, which is about an deep-seated fire extinguishing efficiency augmentation when using wetting agents. The porous materials used in the experiments is radiata pine wood flour, which occupies more than 75% of the domestic wood market. Fire fighting water is selected as Butyl Di Glycol (BDG), which is being used for infiltration extinguishing agent, and the experiment was carried out by producing a standard solution. The experiment was carried out on the basis of the Deep-Seated Fire Test of NFPA 18. The amount of watering, porous material to the internal amount of penetration, and runoff measurement out of the porous material was conducted. According to experimental results, as the surface tension is reduced, the surfactant concentration macroscopic penetration rate decreases, but infiltration to a porous material is shown to have growth characteristics.
Kim, Min-Choul;Lee, Gang-Woo;Lee, Man-Sig;Shon, Byung-Hyun
Journal of the Korea Academia-Industrial cooperation Society
/
v.9
no.6
/
pp.1745-1753
/
2008
We analyzed the physical and chemical properties such as proximate analysis, ultimate analysis, heating values, thermogravimetric analysis, and combustion test for the organic sludge discharged from chemical and petrochemical product manufacturing industries in the industrial complex. The average combustible and ash content of organic sludges from chemical and petrochemical product manufacturing industries were 17.42%, 7.45%, and 18.25%, 4.22%, respectively. The C, H, O, N, and S compositions for chemical and petrochemical product manufacturing industries were 33.06, 4.34, 24.81, 5.18, and 0.72%. And those compositions for petrochemical product manufacturing industries were 36.58, 4.74, 26.79, 5.09, and 0.49%, respectively. From the TGA test, the minimum temperature for combustion of the sludge discharged from B company was $700^{\circ}C$ for direct use for energy and 2 sludges(F and N companies) were about $600^{\circ}C$. According to the basic combustion test, high concentration of CO was formed because oxidation and pyrolysis reaction take place in the batch type reactor at the same time. From this phenomena we could obtain the significant data for the overheating and breakage of furnace.
Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.
This study investigated the smoke risk assessment of woods and plastics for construction materials, focusing on the smoke performance index-V (SPI-V), smoke growth index-V (SGI-V), and smoke risk index-VI (SRI-VI) according to a newly designed methodology. Spruce, Lauan, polymethylmethacrylate (PMMA), and polycarbonate (PC) were used for test pieces. Smoke characteristics of the materials were measured using a cone calorimeter (ISO 5660-1) equipment. The smoke performance index-V calculated after the combustion reaction was found to be 1.0 to 3.4 based on PMMA. Smoke risk by smoke performance index-V was increased in the order of PC, Spruce, Lauan and PMMA. Lauan and PMMA showed similar values. The smoke growth index-V was found to be 1.0 to 9.2 based on PMMA. Smoke risk by smoke growth index-V increased in the order of PMMA, PC, Spruce, and Lauan. COpeak production rates of all specimens were measured between 0.0021 to 0.0067 g/s. In conclusion, materials with a low smoke performance index-V and a high smoke growth index-V cause a high smoke risk from fire. Therefore, it is understood that the smoke risk from fire is high. It is collectively summarized by the smoke risk index-VI.
This study investigated the fire risk assessment of woods and plastics for construction materials, focusing on the fire performance index-III (FPI-III), fire growth index-III (FGI-III), and fire risk index-IV (FRI-IV) by a newly designed method. Japanese cedar, red pine, polymethylmethacrylate (PMMA), and polyvinyl chloride (PVC) were used as test pieces. Fire characteristics of the materials were investigated using a cone calorimeter (ISO 5660-1) equipment. The fire performance index-III measured after the combustion reaction was found to be 1.0 to 15.0 with respect to PMMA. Fire risk by fire performance index-III increased in the order of PVC, red pine, Japanese cedar, and PMMA. The fire growth index-III was found to be 0.5 to 3.3 based on PMMA. Fire risk by fire growth index-III increased in the order of PVC, PMMA, red pine, and Japanese cedar. COpeak concentrations of all specimens were measured between 106 and 570 ppm. In conclusion, it is understood that Japanese cedar with a low bulk density and PMMA containing a large amount of volatile organic substances have a low fire performance index-III and high fire growth index-III, and thus have high fire risk due to fire. This was consistent with the fire risk index-IV.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.