• Title/Summary/Keyword: Combined heat and power (CHP)

Search Result 77, Processing Time 0.021 seconds

Exergy and Entransy Performance Characteristics of Cogeneration System in Parallel Circuit Using Low-Grade Heat Source (저등급 열원으로 구동되는 병렬 열병합 발전시스템의 엑서지와 엔트랜시 성능 특성)

  • KIM, KYOUNG HOON;KIM, KYOUNGJIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.77-85
    • /
    • 2021
  • In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of an organic Rankine cycle (ORC) and an additional process heater in a parallel circuit. Special attention is paid to the effects of the source temperature, turbine inlet pressure, and the working fluid on the thermodynamic performance of the system. Results showed that the work efficiency of entransy is higher than that of energy but lower than that of exergy, wheress the process heat efficiency of entransy is lower than that of energy but higher than that of exergy. Entrancy analysis showed the potential to complement the exergy analysis in the optimal design of the energy system.

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

Power Generation Efficiency Model for Performance Monitoring of Combined Heat and Power Plant (열병합발전의 성능 모니터링을 위한 발전효율 모델)

  • Ko, Sung Guen;Ko, Hong Cheol;Yi, Jun Seok
    • Plant Journal
    • /
    • v.16 no.4
    • /
    • pp.26-32
    • /
    • 2020
  • The performance monitoring system in the power plant should have the capability to estimate power generation efficiency accurately. Several power generation efficiency models have been proposed for the combined heat and power (CHP) plant which produces both electricity and process steam(or heating energy, hereinafter expressed by process steam only). However, most of the models are not sufficiently accurate due to the wrong evaluation of the process steam value. The study suggests Electricity Conversion Efficiency (ECE) model with determination of the heat rate of process steam using operational data. The suggested method is applied to the design data and the resulted trajectory curve of power generation efficiency meets the data closely with R2 99.91%. This result confirms that ECE model with determination of the model coefficient using the operational data estimate the efficiency so accurately that can be used for performance monitoring of CHP plant.

Evaluation of Technical Production Efficiency and Business Structure of Domestic Combined Heat and Power (CHP) Operators: Panel Stochastic Frontier Model Analysis for 16 Collective Energy Operators (국내 열병합발전사업의 기술적 생산효율성 추정 및 사업구조 평가: 16개 집단에너지사업자에 대한 패널 확률프론티어모형(SFA) 분석)

  • Lim, Hyungwoo;Kim, Jaehyeok;Shin, Donghyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.557-579
    • /
    • 2021
  • Collective energy is an intermediate stage in energy conversion and has a great influence on the power structure as a distributed power source. However, the problem of the collective energy business has recently emerged due to the worsening profitability of some collective energy operators. This study measured the technical efficiency of major operators through the estimation of the production efficiency of Korean collective energy operators, and based on this, we looked at ways to improve the profit structure of operators. After collecting detailed data from 16 collective energy operators between 2016 and 2019, the production efficiency of operators was estimated using the panel stochastic frontier model. As a result of the estimation, combined steam power operators showed the highest production efficiency and reverse CHP operators showed the lowest efficiency. Furthermore, as a result of examining the factors influencing profitability, it was confirmed that production efficiency has a positive effect on overall profitability. However, businesses with a high proportion of heat production, such as small district electricity operators, profitability was lower. This phenomenon is due to the structural limitations of the current heat sales market. Hence, the adjustment of the heat sales unit price is necessary to improve profitability of collective energy operators.

A Feasibility Study for Renewable Energy from Sewage Sludge Biogas (하수슬러지 Biogas의 신재생에너지화 타당성 연구)

  • Kang, Ho;Lee, Hye Mi;Cho, Sang Sun;Park, Sun Uk;Jeong, Ji Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.754-760
    • /
    • 2010
  • This study was carried out not only to evaluate optimal operating condition to increase biogas production, but also to estimate feasibility of renewable energy from anaerobic digester of sewage sludge. Semi- continuous Fed and Mixed Reactors (SCFMRs) were operated in various condition to quantify the reactor variables. The result of SCFMR operation showed that the biogas productivity and total volatile solids (TVS) removal of total solids (TS) 4% reactor at hydraulic retention time (HRT) 20 days with Organic Loading Rate (OLR) of $1.45kg/m^3-d$ were $0.39m^3/m^3-d$ and 26.7%, respectively which was two times higher than that of TS 2.5% reactor. Consequently the daily biogas production of $20,000m^3$ would be possible from the total volume of $52,000m^3$ of anaerobic digesters of the municipal wastewater treatment plant in D city. In feasibility study for the Biogas utilization, combined heat and power system (CHP) and CNG gasification were examined. In case of CHP, the withdrawal period of capital cost for gas-engine (GE) and micro gas-turbine (MGT) were 7.7 years and 9.1 years respectively. biogas utilization as Clean Natural Gas (CNG) shows lower capital cost and higher profit than that of CHP system. CNG gasificaion after biogas purification is likely the best alternative for Biogas utilization which have more economic potential than CHP system. The withdrawal period of capital cost appeared to be 2.3 years.

Optimal Engineering of MicroGrid on the Environmental Cost and Operation Type (환경비용 및 운용방식을 고려한 마이크로그리드 최적 엔지니어링 연구)

  • Park, Jung-Sung;Shin, Hye-Kyeong;Lee, Duck-Su;Lee, Hak-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.369-371
    • /
    • 2008
  • Environmental issue is one of the key factors to industry area using fossil fuels, because it accelerates the global warming. So it is supposed to reduce greenhouse gases around the developed nations of the world at times go. This issue is especially for the power industry. Under this background, CHP system that consists of Distributed Energy Resources (DER) system, such as natural power system (wind, solar) and fuel-cell, co-generation, also known as CHP (Combined heat and power), has been developed greatly during the last 10 years. This paper adopts optimal model using GAMS to develop methods for conducting an integrated assessment of MicroGrid system.

  • PDF

Optimal Operation Model of Heat Trade based District Heating and Cooling System Considering Start-up Characteristic of Combined Cycle Generation (가스터빈 복합발전의 기동특성을 고려한 열거래 기반 지역 냉난방 시스템의 최적 운영 모델)

  • Kim, Jong-Woo;Lee, Ji-Hye;Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1610-1616
    • /
    • 2013
  • Recently, district heating and cooling (DHC) systems based on combined cycle generation (CCG) providers are increasing in Korea. Since characteristics of combined heat and power (CHP) generators and heat demands of providers, heat trading between DHC providers based on the economic viewpoint is required; the heat trading has been doing. In this paper, a mathematical model for optimal operation based on heat trading between DHC providers is proposed. Especially, start-up characteristic of CCG is included. The operation model is established by mixed integer linear programming (MILP).

Performance evaluation of a steam injected gas turbine CHP system using biogas as fuel (바이오 가스를 연료로 사용하는 증기분사 가스터빈 열병합발전 시스템의 성능분석)

  • Kang, Do-Won;Kang, Soo-Young;Kim, Tong-Seop;Hur, Kwang-Beom
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.57-62
    • /
    • 2010
  • MW-class gas turbines are suitable for distributed generation systems such as community energy systems(CES). Recently, biogas is acknowledged as an alternative energy source, and its use in gas turbines is expected to increase. Steam injection is an effective way to improve performance of gas turbines. This study intended to examine the influence of injecting steam and using biogas as the fuel on the operation and performance a gas turbine combined heat and power (CHP) system. A commercial gas turbine of 6 MW class was used for this study. The primary concern of this study is a comparative analysis of system performance in a wide biogas composition range. In addition, the effect of steam temperature and injected steam rate on gas turbine and CHP performance was investigated.

Performance Analysis of a Steam Injected Gas Turbine Combined Heat and Power System Considering Turbine Blade Temperature Change (터빈 블레이드 온도 변화를 고려한 증기분사 가스터빈 열병합발전 시스템의 성능해석)

  • Kang, Soo Young;Kim, Jeong Ho;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.18-24
    • /
    • 2012
  • This study simulated the operation of a steam injected gas turbine combined heat and power (CHP) system. A full off-design analysis was carried out to examine the change in the turbine blade temperature caused by steam injection. The prediction of turbine blade temperature was performed for the operating modes suggested in the previous study where the limitation of compressor surge margin reduction was analyzed in the steam injected gas turbine. It was found that both the fully injected and partially injected operations suggested in the previous study would cause the blade temperature to exceed that of the pure CHP operation and the under-firing operation would provide too low blade temperature. An optimal operation was proposed where both the turbine inlet temperature and the injection amount were modulated to keep both the reference turbine blade temperature and the minimum compressor surge margin. The modulation was intended to maintain a stable compressor operation and turbine life. It was shown that the optimal operation would provide a larger power output than the under-firing operation and a higher efficiency than the original partially injected operation.

A Study on the Optimum Capacity of Combind Heat & Power Plant Related to Size of District Heating System (지역난방 규모에 따른 열병합발전플랜트의 경제적 최적용량 선정에 관한 연구)

  • Chung, Cahn-Kyo;Kim, Hoon
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to find plant utilities capacity for economical operation of combined heat & power by reducing energy expenditure. Using a numerical simulation program CHPSIM, a comparative analysis of additional heat expenditure (AHE) of combined heat & power plant in relation to size of district heating has been performed within the comparison of the difference capacity of gas turbine and steam turbine . As a results, if a 105.2MW gas turbine (exhaust gas temp ; 540$^{\circ}C$) installed in CHP plant can reduced 17-18% yearly the AHE than 75MW gas turbine (520$^{\circ}C$) installed. If a 130-150MW gas turbine (560-580$^{\circ}C$) installed, can reduced 34.7-35.8% of the yearly AHE.

  • PDF