• Title/Summary/Keyword: Combined feature

Search Result 508, Processing Time 0.031 seconds

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.

Bird sounds classification by combining PNCC and robust Mel-log filter bank features (PNCC와 robust Mel-log filter bank 특징을 결합한 조류 울음소리 분류)

  • Badi, Alzahra;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • In this paper, combining features is proposed as a way to enhance the classification accuracy of sounds under noisy environments using the CNN (Convolutional Neural Network) structure. A robust log Mel-filter bank using Wiener filter and PNCCs (Power Normalized Cepstral Coefficients) are extracted to form a 2-dimensional feature that is used as input to the CNN structure. An ebird database is used to classify 43 types of bird species in their natural environment. To evaluate the performance of the combined features under noisy environments, the database is augmented with 3 types of noise under 4 different SNRs (Signal to Noise Ratios) (20 dB, 10 dB, 5 dB, 0 dB). The combined feature is compared to the log Mel-filter bank with and without incorporating the Wiener filter and the PNCCs. The combined feature is shown to outperform the other mentioned features under clean environments with a 1.34 % increase in overall average accuracy. Additionally, the accuracy under noisy environments at the 4 SNR levels is increased by 1.06 % and 0.65 % for shop and schoolyard noise backgrounds, respectively.

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

Method of Speech Feature Parameter Extraction Using Modified-MFCC (Modified-MECC를 이용한 음성 특징 파라미터 추출 방법)

  • 이상복;이철희;정성환;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.269-272
    • /
    • 2001
  • In speech recognition technology, the utterance of every talker have special resonant frequency according to shape of talker's lip and to the motion of tongue. And utterances are different according to each talker. Accordingly, we need the superior moth-od of speech feature parameter extraction which reflect talker's characteristic well. This paper suggests the modified-MfCC combined existing MFCC with gammatone filter. We experimented with speech data from telephone and then we obtained results of enhanced speech recognition rate which is higher than that of the other methods.

  • PDF

Silhouette-based Gait Recognition for Variable Viewpoint (시점 변화에 강인한 실루엣 기반 게이트 인식)

  • 나진영;강성숙;정승도;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1883-1886
    • /
    • 2003
  • Gait is defined as "a manor of walking". It can used as a biometric measure to recognize known persons. Gait is an idiosyncratic feature determined by an individual's weight, stride length, and posture combined with characteristic motion. but its feature extracted from images varies with the viewpoint. In this paper, we propose a gait recognition method using a planer homography, which is robust for viewpoint variation. We represent an individual as key-silhouettes. And we endow key-silhouettes with weight calculated using the characteristic of PCA. Experimental result shows that proposed method is robust for viewpoint variation as images synthesised same viewpoint.

  • PDF

Medical Image Retrieval based on Multi-class SVM and Correlated Categories Vector

  • Park, Ki-Hee;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.772-781
    • /
    • 2009
  • This paper proposes a novel algorithm for the efficient classification and retrieval of medical images. After color and edge features are extracted from medical images, these two feature vectors are then applied to a multi-class Support Vector Machine, to give membership vectors. Thereafter, the two membership vectors are combined into an ensemble feature vector. Also, to reduce the search time, Correlated Categories Vector is proposed for similarity matching. The experimental results show that the proposed system improves the retrieval performance when compared to other methods.

A stereo matching method using minimum feature vector distance and disparity map (최소 특징 벡터 거리와 변이지도를 이용한 스테레오 정합 기법)

  • Ye, Chul-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.403-404
    • /
    • 2006
  • In this paper, we proposed muli-dimensional feature vector matching method combined with disparity smoothness constraint. The smoothness constraint was calculated using the difference between disparity of center pixel and those of 4-neighbor pixels. By applying proposed algorithm to IKONOS satellite stereo imagery, we obtained robust stereo matching result in urban areas.

  • PDF

Quantum electrodynamical formulation of photochemical acid generation and its implications on optical lithography

  • Seungjin Lee
    • ETRI Journal
    • /
    • v.46 no.5
    • /
    • pp.774-782
    • /
    • 2024
  • The photochemical acid generation is refined from the first principles of quantum electrodynamics. First, we briefly review the formulation of the quantum theory of light based on the quantum electrodynamics framework to establish the probability of acid generation at a given spacetime point. The quantum mechanical acid generation is then combined with the deprotection mechanism to obtain a probabilistic description of the deprotection density directly related to feature formation in a photoresist. A statistical analysis of the random deprotection density is presented to reveal the leading characteristics of stochastic feature formation.

Handwritten Numeral Recognition using Composite Features and SVM classifier (복합특징과 SVM 분류기를 이용한 필기체 숫자인식)

  • Park, Joong-Jo;Kim, Tae-Woong;Kim, Kyoung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2761-2768
    • /
    • 2010
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our feature sets was tested by recognition experiments on the handwritten numeral database CENPARMI, where we used SVM with RBF kernel as a classifier. The experimental results showed that each combination of two or three features gave a better performance than a single feature. This means that each single feature works with a different discriminating power and cooperates with other features to enhance the recognition accuracy. By using the composite feature of the three features, we achieved a recognition rate of 98.90%.