• Title/Summary/Keyword: Combined Uncertainty

Search Result 207, Processing Time 0.03 seconds

Model Classification and Evaluation of Measurement Uncertainty (측정 불확도 모형 분류 및 평가)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.145-156
    • /
    • 2007
  • This paper is to propose model classification and evaluation of measurement uncertainty. In order to obtain type A and B uncertainty, variety of measurement mathematical models are illustrated by example. The four steps to evaluate expanded uncertainty are indicated as following; First, to get type A standard uncertainty, measurement mathematical models of single, double, multiple, design of experiment and serial autocorrelation are shown. Second, to solve type B standard uncertainty measurement mathematical models of empirical probability distributions and multivariate are presented. Third, type A and B combined uncertainty, considering sensitivity coefficient, linearity and correlation are discussed. Lastly, expanded uncertainty, considering degree of freedom for type A, B uncertainty and coverage factor are presented with uncertainty budget. SPC control chart to control expanded uncertainty is shown.

A Study on Estimation uncertainty of measurement in mechanical characteristic exam for Plastic materials (플라스틱재료의 기계적 특성시험 불확도추정에 대한 고찰)

  • Kim Won-kyung;Kwon Sung-Tae;Kim Jung-Nam
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.301-306
    • /
    • 2003
  • Recently, uncertainty of measurement became a major concern for the people working on the laboratory evaluation and accreditation. 'uncertainty of measurement is a parameter associated with the result of a measurement that characteristics the dispersion of the value that could reasonably be attributed to the measured.' This study analysed how to estimate uncertainty of measurement in mechanical characteristic exam for Plastic material. its uncertainty was estimated according to International Organization for Standardization(ISO), they were named to A type uncertainty, B type uncertainty, combined standard uncertainty, and expanded uncertainty. We obtained that the combined standard uncertainty was 0.96697 MPa and the expanded uncertainty was 2.291MPa.

  • PDF

Application of the uncertainty for insertion loss measurement of silencers (소음기 감음 성능 불확도 산출 방법 연구)

  • Yu, Seung-Guk;Kim, Dae-Hyeon;Kim, Yeong-Chan;Kim, Du-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1675-1680
    • /
    • 2000
  • Recently the uncertainty has been made rapid progress in various fields of industry but the uncertainty measurement method of acoustical test (i.e. Insertion loss, Absorption ratio, Transmission loss etc,) hasn't been established. In this study, the uncertainty of measurement method for ducted silencers is carried out according to ISO 7235. The standard uncertainty factors are composed of sound pressure level, microphone sensitivity and pistonphone calibration in this measurement. Sound pressure level is type A evaluation of uncertainty, microphone sensitivity and pistonphone calibration are type B evaluation of uncertainty. The combined standard uncertainty is calculated by two type evaluation. The expanded uncertainty is expressed by the combined standard uncertainty multiply k value which is yield the effective degree of freedom.

  • PDF

Uncertainty in Potentiodynamic Polarization Resistance Measurement (동전위 분극저항 측정에서의 불확도)

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.193-196
    • /
    • 2009
  • For the estimation of uncertainty in potentiodynamic polarization resistance measurement, the type A uncertainty was measured using type 316 stainless steel in an acidified NaCl solution. Sensitivity coefficients were determined for measurand such as scan rate of potential, temperature of solution, concentration of NaCl, concentration of HCl, surface roughness of specimen and flow rate of purging gas. Sensitivity coefficients were large for the measurand such as the scan rate of potential, temperature of solution and roughness of specimen. However, the sensitivity coefficients were not the major factors influencing the combined standard uncertainty of polarization resistance due to the low values of uncertainty in measurements of the measurands. A major influencing factor was the concentration of NaCl. The value of type A uncertainty was 1.1 times the value of type B uncertainty, and the combined standard uncertainty was 10.5 % of the average value of polarization resistance.

Estimation of uncertainty for the determination of residual flubendazole in pork (돼지고기 중 플루벤다졸 잔류분석의 불확도 추정)

  • Kim, MeeKyung;Park, Su-Jeong;Lim, Chae-Mi;Cho, Byung-Hoon;Kwon, Hyun-Jeong;Kim, Dong-Gyu;Chung, Gab-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Measurement uncertainty could play an important role in the assessment of test results in laboratories and industries. We investigated measurement uncertainties possibly included in determination of flubendazole, a benzimidazole anthelmintic, in pork by HPLC. The concentration of flubendazole was 62.69 ng/g in a sample of pork. Uncertainty was estimated in the analytical procedure of flubendazole. A model equation was made for determination of flubendazole in pork. The four uncertainty components such as weight of sample, volume of sample, calibration curve, and recovery were selected to estimate measurement uncertainties. Standard uncertainty was calculated for each component and all the standard uncertainties were combined. The combined standard uncertainty was expanded to a sample population as an expanded uncertainty. The expanded uncertainty was calculated using k value on Student's t-table and effective degrees of freedom from Welch-Satterthwaite formula. The expanded uncertainty was calculated as 3.45 with the combined standard uncertainty, 1.584 6 and the k value, 2.18. The final expression can be ($62.69{\pm}3.45$) ng/g (confidence level 95%, k = 2.18). The uncertainty value might be estimated differently depending on the selection of the uncertainty components. It is difficult to estimate all the uncertainty factors. Therefore, it is better to take several big effecting components instead of many small effecting components.

A Study on the Measurement Uncertainty of Pipe Prover (파이프 프루버의 측정불확도에 관한 연구)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1388-1398
    • /
    • 2000
  • A pipe prover is a flowmeter calibrator used in flow measurement field. Gravimetric and volumetric methods were applied to determine the basic volume of the pipe prover. Uncertainty of its basic volume measurement was evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainty of determining the basic volume was estimated from the sensitivity coefficient and the standard uncertainty of independent variables. It was found that the uncertainties of the weighing and volume measurements have dominant influence on that of the basic volume determination. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of the basic volume is shown clearly.

Calibration uncertainty of a spinning rotor gauge (스피닝 로터 게이지 교정 불확도)

  • 홍승수;임인태;신용현;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2003
  • Spinning Rotor Gauge (SRG) has been used to transfer standard gauge for international comparison at the high vacuum standards. We calibrated a spinning rotor gauge by using dynamic calibration system (DCS) that was a national high vacuum standards system. And its uncertainties were evaluated with the International Organization for Standardization (ISO), they were recognized ai A type uncertainty, B type uncertainty, combined Standard uncertainty, and expanded uncertainty. The combined standard uncertainties were $1.8007\times10^{-5}$ Pa ~ ~$4.8422\times10^{-5}$ Pa for this spinning rotor gauge.

A Study on the Measurement Uncertainty of Flowmeter Calibrator (유량계 교정장치의 측정불확도에 관한 연구)

  • Im, Gi-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.561-571
    • /
    • 2001
  • The standard uncertainty of flowrate measurement is obtained by combining that of independent variables. Gravimetric and volumetric method were applied to determine the flowrate and the standard uncertainties of flowrate measurement by both methods were evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainties of determining the flowrate were estimated from the sensitivity coefficient and the standard uncertainty of independent variables. For practical application, the methods for evaluating and expressing uncertainty in flow measurement were discussed. It was found that the uncertainties of the weighing and time measurement in gravimetric method, the volume and time measurement in volumetric method have dominant influence on that of flowrate measurement. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of flowrate measurement is shown clearly.

Calibration uncertainty of a capacitance diaphragm gauge (용량형진공계 교정 불확도)

  • 홍승수;신용현;정광화;임인태;우삼용;김정형;최상철
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.173-181
    • /
    • 2001
  • We calibrated a capacitance diaphragm gauge(CDG) of 1,333 Pa range by using ultrasonic interferometer manometer (UIM) that was a national low vacuum standards system. And its uncertainties were evaluated according to International Organization for Standardization(ISO), they were named to A type uncertainty, B type uncertainty, combined standard uncertainty, and expanded uncertainty, We obtained that the combined standard uncertainties were $1.38 \times10^{-2}\; Pa\sim3.03 \times10^{-1} $Pa and the relative uncertainties(combined standard uncertainty/standard pressure) were $2.3 \times 10^{-4}\;Pa\sim7.9 X\times10^{-3} $Pa for this 1,333 Pa CDG.

  • PDF