• Title/Summary/Keyword: Combinatorial optimization model

Search Result 51, Processing Time 0.029 seconds

AN IMPROVED COMBINATORIAL OPTIMIZATION ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT PROBLEM WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Wang, Jinzhi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.283-290
    • /
    • 2008
  • This paper is motivated by the problem of fitting a group of cuboids into a simplified rotating vessel of the artificial satellite. Here we introduce a combinatorial optimization model which reduces the three-dimensional layout problem with behavioral constraints to a finite enumeration scheme. Moreover, a global combinatorial optimization algorithm is described in detail, which is an improved graph-theoretic heuristic.

  • PDF

An Optimization Model for Resolving Circular Shareholdings of Korean Large Business Groups (대규모 기업집단의 순환출자 해소를 위한 최적화 모형)

  • Park, Chan-Kyoo;Kim, Dae-Lyong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.73-89
    • /
    • 2009
  • Circular shareholdings among three companies are formed when company A owns stock in company B, company B owns stock in company C, and company C owns stock in company A. Since circular shareholdings among large family-controlled firms are used to give the controlling shareholder greater control or more opportunities to expropriate minority investors, the government has encouraged large business groups to gradually remove their circular shareholdings. In this paper, we propose a combinatorial optimization model that can answer the question, which equity investments among complicated investment relationships of one large business group should be removed to resolve its circular shareholdings. To the best knowledge of the authors, our research is the first one that has approached the circular shareholding problem in respect of management science. The proposed combinatorial optimization model are formulated into integer programming problem and applied to some Korean major business groups.

Optimal algorithm of part-matching process using neural network (신경 회로망을 이용한 부품 조립 공정의 최적화 알고리즘)

  • 오제휘;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.143-146
    • /
    • 1996
  • In this paper, we propose a hopfield model for solving the part-matching which is the number of parts and positions are changed. The goal of this paper is to minimize part-connection in pairs and net total path of part-connection. Therefore, this kind of problem is referred to as a combinatorial optimization problem. First of all, we review the theoretical basis for hopfield model to optimization and present two method of part-matching; Traveling Salesman Problem (TSP) and Weighted Matching Problem (WMP). Finally, we show demonstration through computer simulation and analyzes the stability and feasibility of the generated solutions for the proposed connection methods.

  • PDF

A New Dynamic Auction Mechanism in the Supply Chain: N-Bilateral Optimized Combinatorial Auction (N-BOCA)

  • Choi, Jin-Ho;Chang, Yong-Sik;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.379-390
    • /
    • 2005
  • In this paper, we introduce a new combinatorial auction mechanism - N-Bilateral Optimized Combinatorial Auction (N-BOCA). N-BOCA is a flexible iterative combinatorial auction model that offers optimized trading for multi-suppliers and multi-purchasers in the supply chain. We design the N-BOCA system from the perspectives of architecture, protocol, and trading strategy. Under the given N-BOCA architecture and protocol, auctioneers and bidders have diverse decision strategies for winner determination. This needs flexible modeling environments. Hence, we propose an optimization modeling agent for bid and auctioneer selection. The agent has the capability to automatic model formulation for Integer Programming modeling. Finally, we show the viability of N-BOCA through prototype and experiments. The results say both higher allocation efficiency and effectiveness compared with I-to-N general combinatorial auction mechanisms.

  • PDF

Combinatorial Optimization Model of Air Strike Packages based on Target Groups (표적군 기반 공격 편대군 조합 최적화 모형)

  • Cho, Sanghyeon;Lee, Moongul;Jang, Youngbai
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.386-394
    • /
    • 2016
  • In this research, in order to optimize the multi-objective function effectively, we suggested the optimization model to maximize the total destruction of ground targets and minimize the total damage of aircrafts and cost of air munitions by using goal programming. To satisfy the various variables and constraints of this mathematical model, the concept of air strike package is applied. As a consequence, effective attack can be possible by identifying the prior ground targets more quickly. This study can contribute to maximize the ROK air force's combat power and preservation of high value air asset in the war.

Dynamic Collaborative Cloud Service Platform: Opportunities and Challenges

  • Yoon, Chang-Woo;Hassan, Mohammad Mehedi;Lee, Hyun-Woo;Ryu, Won;Huh, Eui-Nam
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.634-637
    • /
    • 2010
  • This letter presents a model for a dynamic collaboration (DC) platform among cloud providers (CPs) that prevents adverse business impacts, cloud vendor lock-in and violation of service level agreements with consumers, and also offers collaborative cloud services to consumers. We consider two major challenges. The first challenge is to find an appropriate market model in order to enable the DC platform. The second is to select suitable collaborative partners to provide services. We propose a novel combinatorial auction-based cloud market model that enables a DC platform among CPs. We also propose a new promising multi-objective optimization model to quantitatively evaluate the partners. Simulation experiments were conducted to verify both of the proposed models.

A New Dynamic Auction Mechanism in the Supply Chain: N-Bilateral Optimized Combinatorial Auction (N-BOCA) (공급사슬에서의 새로운 동적 경매 메커니즘: 다자간 최적화 조합경매 모형)

  • Choi Jin-Ho;Chang Yong-Sik;Han In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.139-161
    • /
    • 2006
  • In this paper, we introduce a new combinatorial auction mechanism - N-Bilateral Optimized Combinatorial Auction (N-BOCA). N-BOCA is a flexible iterative combinatorial auction model that offers optimized trading for multi-suppliers and multi-purchasers in the supply chain. We design the N-BOCA system from the perspectives of architecture, protocol, and trading strategy. Under the given N-BOCA architecture and protocol, auctioneers and bidders have diverse decision strategies f3r winner determination. This needs flexible modeling environments. Hence, we propose an optimization modeling agent for bid and auctioneer selection. The agent has the capability to automatic model formulation for Integer Programming modeling. Finally, we show the viability of N-BOCA through prototype and experiments. The results say both higher allocation efficiency and effectiveness compared with 1-to-N general combinatorial auction mechanisms.

  • PDF

Optimal Design of Contour-Lined Plots for Land Consolidation Planning in Sloping Areas (경사지 경지정리지구의 등고선 구획 최적설계)

  • 강민구;박승우;강문성;김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.83-95
    • /
    • 2003
  • In this study, a new concept in a paddy consolidation project is introduced in that curved parallel terracing with contour-lined layout is adopted in sloping areas instead of conventional rectangular terracing. The contoured layout reduces earth-moving considerably compared to rectangular methods in consolidation projects. The objective of the paper is to develop a combinatorial optimization model using the network theory for the design of contour-lined plots which minimizes the volume of earth moving. The results showed that as the length of short side of plot is longer or the land slope is steeper, the volume of earth moving for land leveling increases. The developed optimization model is applied for three consolidated districts and the resulting optimal earth moving is compared with the volume of earth from the conventional method. The shorter is the minimum length of short side of a polt with increases the number of plots, the less is the volume of earth. As the minimum length of short side is 20 m for efficient field works by farm machinery, the volume of earth moving of optimal plot is less by 21.0∼27.1 % than that of the conventional consolidated plots.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.