• Title/Summary/Keyword: Combat Vehicle

Search Result 116, Processing Time 0.023 seconds

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

Development Direction of Reliability-based ROK Amphibious Assault Vehicles (신뢰성 기반 한국군 차기 상륙돌격장갑차 발전방향)

  • Baek, Ilho;Bong, Jusung;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.14-22
    • /
    • 2021
  • A plan for the development of reliability-based ROK amphibious assault vehicles is proposed. By analyzing the development case of the U.S. EFV, considerations for the successful development of the next-generation Korea Forces amphibious assault vehicle are presented. If the vehicle reliability can be improved to the level of the fourth highest priority electric unit for power units, suspensions, decelerators, and body groups, which have the highest priority among fault frequency items, a system level MTBF of 36.4%↑ can be achieved, and the operational availability can be increased by 3.5%↑. The next-generation amphibious assault vehicles must fulfill certain operating and performance requirements, the underlying systems must be built, and sequencing of the hybrid engine and the modular concept should be considered. Along with big-data- and machine-learning-based failure prediction, machine maintenance based on augmented reality/virtual reality and remote maintenance should be used to improve the ability to maintain combat readiness and reduce lifecycle costs.

A Study on the Initial Design Method for an Effective Acquisition of Future Ground Combat Vehicles (미래지상전투차량의 효과적 획득을 위한 초기설계기법에 관한 연구)

  • Kim, Hee-young;Kwon, Seung Man;Lee, Kyu Noh
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.41-49
    • /
    • 2017
  • In the acquisition program, the conceptual design is the most important step toward specifying the military objectives, establishing requirements and determining future developmental directions, of a target system. However, if both the requirements and directions are incorrectly set due to the lack of development experiences and literature backgrounds in the target systems, such as future ground combat vehicles, it may become a major risk in the future design phases and the entire acquisition program. In order to correct these errors in the future phases, time, effort and cost are required. Therefore, it is necessary to reduce the errors that occur in the initial stages to effectively acquire the future ground combat vehicles. This paper describes the initial design method for verifying the requirements and the developmental directions and estimating the system performance at the conceptual design through the system-level physical modeling and simulation (M&S) and the target system performance analysis. The system-level physical M&S use cutting-edge design tools, model-based designs and geometric-based designs. The system performance estimation is driven from the results of the system-level physical M&S and the specialized system analysis software.

Proposal for the 『Army TIGER Cyber Defense System』 Installation capable of responding to future enemy cyber attack (미래 사이버위협에 대응 가능한 『Army TIGER 사이버방호체계』 구축을 위한 제언)

  • Byeong-jun Park;Cheol-jung Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.157-166
    • /
    • 2024
  • The Army TIGER System, which is being deployed to implement a future combat system, is expected to bring innovative changes to the army's combat methods and comabt execution capability such as mobility, networking and intelligence. To this end, the Army will introduce various systems using drones, robots, unmanned vehicles, AI(Artificial Intelligence), etc. and utilize them in combat. The use of various unmanned vehicles and AI is expected to result in the introduction of equipment with new technologies into the army and an increase in various types of transmitted information, i.e. data. However, currently in the military, there is an acceleration in research and combat experimentations on warfigthing options using Army TIGER forces system for specific functions. On the other hand, the current reality is that research on cyber threats measures targeting information systems related to the increasing number of unmanned systems, data production, and transmission from unmanned systems, as well as the establishment of cloud centers and AI command and control center driven by the new force systems, is not being pursued. Accordingly this paper analyzes the structure and characteristics of the Army TIGER force integration system and makes suggestions for necessity of building, available cyber defense solutions and Army TIGER integrated cyber protections system that can respond to cyber threats in the future.

A Study on the Research Trends in Unmanned Surface Vehicle using Topic Modeling (토픽모델링을 이용한 무인수상정 기술 동향 분석)

  • Kim, Kwimi;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.597-606
    • /
    • 2020
  • Because the USV(Unmanned Surface Vehicle) is capable of remote control or autonomous navigation at sea, it can secure the superiority of combat power while minimizing human losses in a future combat environment. To plan the technology for the development of USV, the trend analysis of related technology and the selection of promising technology should be preceded, but there has been little research in this area. The purpose of this paper was to measure and evaluate the technology trends quantitatively. For this purpose, this study analyzed the technology trends and selected promising/declining technologies using topic modeling of papers and patent data. As a result of topic modeling, promising technologies include control and navigation, verification/validation, autonomous level, mission module, and application technology, and declining technologies include underwater communication and image processing technology. This study also identified new technology areas that were not included in the existing technology classification, e.g., technology related to research and development of USV, artificial intelligence, launch/recovery, and operation, such as cooperation with manned and unmanned systems. The technology trends and new technology areas identified through this study may be used to derive key technologies related to the development of the USV and establish appropriate R&D policies.

A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle (먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법)

  • Choe, Tok-Son;Ahn, Seong-Yong;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.

Active Flow Control on a UCAV Planform Using Synthetic Jets

  • Lee, Junhee;Lee, Byunghyun;Kim, Minhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.315-323
    • /
    • 2016
  • This paper deals with experimental investigation of active flow control via synthetic jets using an unmanned combat air vehicle (UCAV) planform. Fourteen arrays of synthetic jets, mounted along both leading edges, were fully or partially activated to increase aerodynamic efficiency and reduce pitch-up moment. The measurements were carried out using a six-component external balance, a pressure scanner, and tuft flow visualization. It was observed that aerodynamic efficiency (L/D) and pitching moment were clearly affected by the location of jets. In particular, inboard and outboard actuation could effectively increase L/D. Moreover, inboard actuation showed a reduction in the pitch-up, even more than that generated by the full actuation. These results suggest that inboard actuation not only effectively increases L/D but also reduces the pitch-up using only a few actuators.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

Input Shaping Design for Human Control System (휴먼 제어시스템의 입력형성기 설계)

  • Lee, Seok-Jae;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.54-56
    • /
    • 2006
  • To get the robust and reliable input command, we designed shaping function for target tracking system with commander's handle. Input signals of the commander's handle are generated by human operator. It is response of the human to reduce the error between target and gun. But, tracking error while operator aim a moving target manually gives poor system performance. Input noise, particularly, affects hit accuracy as the system performance. We proposed the design method of input command shaping to reduce the Input noise and to improve the operation ability and convenience. We performed the experiments with combat vehicle, example of Target Tracking System, to show the proposed method is efficient and practical.

  • PDF