• Title/Summary/Keyword: Combat Simulation

Search Result 269, Processing Time 0.024 seconds

A Study on Applying Amphibious Warfare Using EINSTein Model Based on Complexity Theory (복잡계이론 기반하 EINSTein 모형을 이용한 상륙전 적용에 관한 연구)

  • Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.2
    • /
    • pp.114-130
    • /
    • 2006
  • This paper deals with complexity theory to describe amphibious warfare situation using EINSTein (Enhanced ISAAC Neural Simulation Tool) simulation model. EINSTein model is an agent-based artificial "laboratory" for exploring self-organized emergent behavior in land combat. Many studies have shown that existing Lanchester equations used in most war simulation models does not describe changes of combat. Future warfare will be information warfare with various weapon system and complex combat units. We have compared and tested combat results with Lanchester models and EINSTein model. Furthermore, the EINSTein model has been applied and analyzed to amphibious warfare model such as amphibious assault and amphibious sudden attack. The results show that the EINSTein model has a possibility to apply and analyze amphibious warfare more properly than Lanchester models.

Naval Gun Fire Control System Simulation for Verification Depending on Development Phase (함포 사격통제시스템 검증을 위한 시뮬레이션 환경 구축 및 개발진행단계에 따른 적용 방안 연구)

  • Kim, Eui-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • Naval Gun FCS(Fire Control System) is the most fundamental weapon system in Naval Combat System. Simulationbased verification of FCS is mandatory before sea trial since ballistic solution needs complicated process and uses almost all information produced by own ship sensors. The FCS simulation method is proposed for verification of naval gun FCS and applicable to the FCS design depending on combat system development phase based on available data in each design phase. Verified FCS through proposed simulation method is adapted in real naval combat system and the performance has been proven by sea trial.

Modeling and Analysis of Cooperative Engagements with Manned-Unmanned Ground Combat Systems (무인 지상 전투 체계의 협동 교전 모델링 및 분석)

  • Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 2020
  • Analysis of combat effectiveness is required to consider the concept of tactical cooperative engagement between manned-unmanned weapon systems, in order to predict the required operational capabilities of future weapon systems that meets the concept of 'effect-based synchronized operations.' However, analytical methods such as mathematical and statistical models make it difficult to analyze the effects of complex systems under nonlinear warfare. In this paper, we propose a combat simulation model that can simulate the concept of cooperative engagement between manned-unmanned combat entities based on wireless communications. First, we model unmanned combat entities, e.g., unmanned ground vehicles and drones, and manned combat entities, e.g., combatants and artillery, considering the capabilities required by the future ground system. We also simulate tactical behavior in which all entities perform their mission while sharing battlefield situation information through wireless communications. Finally we explore the feasibility of the proposed model by analyzing combat effectiveness such as target acquisition rate, remote control success rate, reconnaissance lead time, survival rate, and enemy's loss rate under a small-unit armor reconnaissance scenario. The proposed model is expected to be used in war-game combat experiments as well as analysis of the effects of manned-unmanned ground weapons.

A Development of 3D Penetration Analysis Program for Survivability Analysis of Combat System : Focused on Tank Model (전투 시스템 생존성 분석을 위한 3차원 관통 해석 프로그램 개발 : 전차 모델을 대상으로)

  • Hwang, Hun-Gyu;Lee, Jae-Woong;Lee, Jang-Se;Park, Jong-Sou
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.244-250
    • /
    • 2015
  • Survivability is avoidance and tolerance ability of combat systems for accomplishing mission in battle field. Therefore, the combat system has to protect or minimize any damage from threats. For this reason, many modeling and simulation based studies which analyze vulnerability of the combat system by threats, are in progress to improve survivability of the combat system. In this paper, we developed a 3D penetration analysis program for survivability analysis of combat system. To do this, we applied the penetration analysis equation to threat and protection performance of tank. Also we implemented simple tank models based on 3D CAD, and tested the developed program using the implemented tank models. As a result, we verified the developed program that is possible to analyze penetration by threat and protection performance of tank and to visualize its result, based on scenarios.

Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle (롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발)

  • Yoo, Seunghoon;Park, Myunghwan;Hwang, Seongin;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.

A Study on Trainer and Cover Recognition Algorithm for Posture Recognition of Virtual Shooting Trainer (가상 사격 훈련자 자세인식을 위한 훈련자와 엄폐물 인식 알고리즘 연구)

  • Kim, Hyung-O;Hong, ChangHo;Cho, Sung Ho;Park, Youster
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.298-300
    • /
    • 2021
  • The Ministry of National Defense decided to build a realistic combat simulation training system based on virtual reality and augmented reality in accordance with the expansion of the scientific training system of "Defense Reform 2.0". The realistic combat simulation training system should be able to maximize the tension and training effect as in actual combat through engagement between trainers. In addition, it should be possible to increase the effectiveness of survival training at the same time as shooting training similar to actual combat through cover training. Previous studies are suitable techniques to improve the shooting precision of the trainee, but it is difficult to practice bilateral engagement like in actual combat, and it is particularly insufficient for combat shooting training using cover. Therefore, in this paper, we propose a S/W algorithm for generating a virtual avatar by recognizing the shooting posture of the opponent on the screen of the virtual shooting trainer. This S/W algorithm can recognize the trainer and the cover based on the depth information acquired through the depth sensor and estimate the trainer's posture.

  • PDF

Probability Distribution of Battle Duration in Stochastic Combats (전투시간의 확률분포에 관한 연구)

  • 홍윤기
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.1-12
    • /
    • 2003
  • Knowing the characteristic of battle duration is important for commanders and logicians in the analysis of combat realization. Analytic solutions for mean and standard deviation can be found in small sized battles. Stochastic combat simulation model is utilized to study a probabilistic behavior of the combat duration. Output data is fitted to a certain probability distribution and some moments such as skewness and kurtosis are investigated. Fire allocation strategies, reselect options, interfiring time random variables, and kill rates are considered to investigate how they affect the battle termination time.

A Study on the Gun-Oriented Anti Air Warfare Capability of the Patrol Killer Combat System (고속정 전투체계의 함포 중심 대공전 성능 분석)

  • Hwang, Kun-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.62-72
    • /
    • 2007
  • The Gun-Oreinted Anti-Air Warfare(GOAAW) which is still one of the important weapon systems of the vessel like the patrol killer to confront air threats comprises the components of the combat system - Command & Control(C2), Ballistic Calculation Unit, Sensors and Guns. In this paper, the GOAAW process of the patrol killer combat system is analyzed with probability and simulated to evaluate the effectiveness and capability of the GOAAW. As a result of the simulation, the performance measures of the GOAAW are discussed in the functional and operational aspects of the combat system.

Study on Combat Efficiency According to Change in Quantity of Small Reconnaissance Drones in the Infantry Company Responsibility Area (중대급 작전지역에서 소형 감시정찰 드론의 수량 변화에 따른 전투 효율 연구)

  • Kyongsoo, Kim;Yongchan, Bae
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.4
    • /
    • pp.23-31
    • /
    • 2022
  • The development of innovative technology through the 4th Industrial Revolution is actively used in the defense field. In particular, surveillance and reconnaissance capabilities using drones will be of great help to the development of military combat capabilities, such as preparing for future military personnel reductions and reinforcing alert capabilities. In this study, we analyze the combat efficiency of drones how helpful drones can be to the military operations through simulations. Drones and enemy move in the efficient shortest path within a two-dimensional space in which operational areas are mapped into number such as detection probability. Based on the detection probability of an enemy infiltrating along the path with the lowest detection probability, the detection probability change that occurs whenever a drone is additionally deployed is presented, and we analyze the combat efficiency according to the additional drone input. Simulation proves that the increase in combat efficiency decreases as more drones are added in small operational areas such as company-level operational areas. This study is expected to contribute to the efficient operation of a limited number of drones in company-level units and to help determine the most desirable quantity of drones for additional combat power improvement.

Modeling Combat Entity with POMDP and DEVS (POMDP-DEVS를 활용한 전투 개체 모델링)

  • Bae, Jang Won;Lee, Kanghoon;Kim, Hyeoneun;Lee, Jun Seok;Goh, Bongseok;Nam, Bowon;Moon, Il-Chul;Kim, Kee-Eung;Park, Jaehyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.498-516
    • /
    • 2013
  • Combat Modeling and Simulation (M&S) is significant to decision makers who predict the next direction of wars. Classical methodologies for combat M&S aimed to describe the exact behaviors of combat entities from military doctrines, yet they had a limitation of describing reasonable behaviors of combat entities that did not appear in the doctrines. Hence, this paper proposed a synthesizing modeling methodology for combat entity models considering both 1) the exact behaviors using descriptive modeling and 2) the reasonable behaviors using prescriptive modeling. With the proposed methodology, combat entities can represent a reality for combat actions rather than the classical methodologies. Moreover, the experiment results using the proposed methodology were significantly different from the results using the classical methodologies. Through the analyses of the experiment results, we showed that the reasonable behaviors of combat entities, which are not specified in the doctrines, should be considered in combat M&S.