• Title/Summary/Keyword: Combat Simulation

Search Result 268, Processing Time 0.027 seconds

The Welfare Effects of the Military Purveyance Program of Livestock Products (축산물 군납사업의 사회적 후생효과 분석)

  • Chang, Jae Bong;Kim, Yoon Hyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.31-39
    • /
    • 2022
  • This study empirically analyzed the welfare effect of the military purveyance program, which plays an important role in maintaining the sales channel and demand base in Korea's agricultural and livestock industry, as well as the stable supply of safe ingredients for military meals essential for the morale and combat power of soldiers. The military purveyance program causes additional demand for domestic livestock products, affecting the trading volumes and price levels in the market. This will change the welfare of producers and consumers, and affect the welfare of soldiers who are subject to military meals. The analysis results obtained through a simulation method based on the equilibrium displacement model are as follows. In the case of pork delivered for military service, producer surplus increased by KRW 55.3-62.2 billion and consumer surplus decreased by KRW 55.1~62.0 billion based on pork production in 2021. It wad analyzed that the consumer surplus in the military supply market, rather than the conventional market, increased by KRW 96.9 billion won, resulting in a total welfare gain of KRW 97.1 billion.

Development of Information Technology for Smart Defense (Smart Defense 를 위한 IT 기술 개발)

  • Chung, Kyo-Il;Lee, So Yeon;Park, Sangjoon;Park, Jonghyun;Han, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.323-328
    • /
    • 2014
  • Recently, there has been demand for the convergence of IT (Information and communication Technologies, ICT) with defense, as has already been achieved in civilian fields such as healthcare and construction. It is expected that completely new and common requirements would emerge from the civilian and military domains and that the shape of war field would change rapidly. Many military scientists forecast that future wars would be network-centric and be based on C4I(Command, Control, Communication & Computer, Intelligence), ISR(Intelligence, Surveillance & Reconnaissance), and PGM(Precision Guided Munitions). For realizing the smart defense concept, IT should act as a baseline technology even for simulating a real combat field using virtual reality. In this paper, we propose the concept of IT-based smart defense with a focus on accurate detection in real and cyber wars, effective data communication, automated and unmanned operation, and modeling and simulation.

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Interference Influence Analysis on the Interoperability in the Combined Military Communication Systems (통합 군 통신 시스템에서 상호운용으로 인한 간섭 영향 분석)

  • Kim, Tae-Woo;Kim, Jung;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.365-371
    • /
    • 2014
  • It is essential for the combined military weapon system to be equipped with interoperability for the efficient combat operation in the modern warfare environment. Since most of modern military systems utilize the electromagnetic wave for the radio communication in the network-centric warfare system, they can be vulnerable to the mutual interference among the adjacent combined military systems. In this paper, the typical radio communication systems are modeled with the modulation types of both spread and non-spread spectrum system. The various interference signals were generated for the simulation of the mutual interference influence from the adjacent radar and communication systems. The simulation results show that the detection performance of the victim communication receiver is seriously affected by the various interferences such as the types of modulation and the ratio of the overlapping bandwidth of the adjacent interferers. This result will be useful for defining the criteria of the interference protection in the combined military system for the interoperability in the future.

Simulation of Rollover Crashes and Passenger Injury Assessment for a Wheeled Armored Vehicle (차륜형 전투차량 전복 시 승무원 안전성 확보를 위한 시뮬레이션 연구)

  • Lee, Gyung-Soo;Jung, Ui-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • A wheeled armored vehicle is a military vehicle that has been developed to enhance combat capabilities and mobility for the army. The wheeled armored vehicle has a high center of gravity, and it operates on unpaved and sloped roads. Therefore, this vehicle has a high risk of rollover crashes. To design the interior of the military vehicle, the crew's safety during rollover crashes is an important factor. However, actual vehicle tests for design are extremely expensive. In this paper, nonlinear dynamic analysis is performed to simulate the rollover crashes and the passenger injury is assessed for a wheeled armored vehicle. The scope of this research is the rollover condition, FE modeling of the wheeled armored vehicle and the dummy, arrangement of dummies, assessment of passenger injuries, and simulation model for rollover crashes.

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

Empirical Capability Assessment Methodology of Quick Look using Weapon Score of Joint Integrated Contingency Model (전구급 워게임 모형의 무기점수를 활용한 Quick Look의 실증적 능력평가 방법론)

  • Kim, Hyungkwon;Kim, Youngho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.1
    • /
    • pp.55-67
    • /
    • 2017
  • The requirement planning system of Korea military has used top down planning approach after introducing Joint Combat Development System since 2007. But this new system has not been propelled harmoniously because it does not have any connection with the current planning system. Due to current time-exhaustive analysis and assessment process in requirement planning system, it not only delays proper decision making, but also hinders understanding on the problem in a whole perspectiveand finding a reasonable solution to our problem. In this study, we present a methodology which can analyze and assess capability utilizing the weapon score of JICM(Joint Integrated Contingency Model). The process identifies capability gap from a mission-oriented perspective in the requirement planning phase and suggests an appropriate solution to our problem. A Quick Look tool which has been developed using Python Script to implement the methodology is also introduced in this study.

Study on Survival Effectiveness of Intelligent System for Warrior Platform by using AWAM (지상무기효과분석모델(AWAM)을 활용한 워리어 플랫폼 지능형 조절 시스템 생존 효과도에 관한 연구)

  • Kwon, Youngjin;Kim, Taeyang;Chae, Je Wook;Kim, Juhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.277-285
    • /
    • 2020
  • Survivability in a battle field is the most important aspect to the warriors. To analyze the survival effectiveness of warrior platform, the simulation via war-game model is an essential step in advance to the development of platform. In this study, Army Weapon effectiveness Analysis Model(AWAM) was utilized for analysis. Several weapon parameters were adjusted to apply the characteristics of warrior platform in some cases of the defense and survival system. Especially, adjusted triage possibility, probability of kill, fatality and accuracy were employed as parameters in the simulation program to evaluate the survival effectiveness of intelligent system based on the previous researches. In the future battle field or virtual space in the AWAM, the warrior platform intelligent system could react emergency treatment on time by expoiting the bio-information of man at arms. Considering the order of supply priority, special force was selected as operating troops and battle scenario without engagement was selected to measure accurate survival effectiveness. In conclusion, the survivability of defence and survival system of the warrior platform was about 1.47 times higher than that of current system.

Power-aware Relay Selection Algorithm for Cooperative Diversity in the Energy-constrained Wireless Sensor Networks (전력 제한된 무선 센서네트워크에서 협력 다이버시티를 위한 전력인지 릴레이 선택 알고리즘)

  • Xiang, Gao;Park, Hyung-Kun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.752-759
    • /
    • 2009
  • Cooperative diversity is an effective technique to combat multi-path fading. When this technique is applied to energy-constrained wireless sensor networks, it is a key issue to design appropriate relay selection and power allocation strategies. In this paper, we proposed a new multi-relay selection and power allocation algorithm to maximize network lifetime. The algorithm are composed of two relay selection stages, where the channel condition and residual power of each node were considered in multi-relay selection and the power is fairly allocated proportional to the residual power, satisfies the required SNR at destination and minimizes the total transmit power. In this paper, proposed algorithm is based on AF (amplify and forward) model. We evaluated the proposed algorithm by using extensive simulation and simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

A Study on the Deployment Plan of Fighter Aircraft Considering the Threat of Enemy Missiles (적 미사일 위협 고려한 전투기 전력 배치방안 연구)

  • Park, Inkyun;Ha, Yonghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • North Korea has recently developed and deployed missiles with various ranges as asymmetrical forces. Among them, short-range ballistic missiles with improved accuracy are expected to aim at achieving tactical goals by hitting important military facilities in Korea with a small number of missiles. Damage to the air force airfields, one of North Korea's main targets of missiles attack, could limit the operation of air force fighters essential to gaining air superiority. Based on the attack by the short range ballistic missiles, the damage probability of military airfields was simulated. And as the one of the concepts of passive defense, the way to reduce the loss of combat power was studied through the changes of the air force squadrons deployment. As a result, the effective deployment plan could be obtained to reduce the amount of power loss compared to the current deployment.