• Title/Summary/Keyword: Combat Simulation

Search Result 268, Processing Time 0.025 seconds

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

Batch Time Interval and Initial State Estimation using GMM-TS for Target Motion Analysis (GMM-TS를 이용한 표적기동분석용 배치구간 및 초기상태 추정 기법)

  • Kim, Woo-Chan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.285-294
    • /
    • 2012
  • Using bearing measurement only, target motion state is not directly obtained so that TMA (Target Motion Analysis) is needed for this situation. TMA is a nonlinear estimation technique used in passive SONAR systems. Also it is the one of important techniques for underwater combat management systems. TMA can be divided to two parts: batch estimation and sequential estimation. It is preferable to use sequential estimation for reducing computational load as well as adaptively to target maneuvers, batch estimation is still required to attain target initial state vector for convergence of sequential estimation. Selection of batch time interval which depends on observability is critical in TMA performance. Batch estimation in general utilizes predetermined batch time interval. In this paper, we propose a new method called the BTIS (Batch Time Interval and Initial State Estimation). The proposed BTIS estimates target initial status and determines the batch time interval sequentially by using a bank of GMM-TS (Gaussian Mixture Measurement-Track Splitting) filters. The performance of the proposal method is verified by a Monte Carlo simulation study.

The Numerical Analysis and Experimental Verification of the Heat Transfer Effect on the Highly Pressurized Gas Spring (고압 밀폐 가스 스프링에서의 열전달 효과 수치해석 및 실험적 검증)

  • Han, Insik;Choi, Kyojun;Kim, Jaeyong;Lee, Yoonbok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Recently the use of gas spring in the combat and commercial vehicle's suspension is increasing. Because of its nonlinear characteristics, the gas spring can support wide range of dynamic loads and gives good ride quality. In design of gas spring, isothermal and adiabatic processes are applied generally, but those processes could not produce heat transfer effect in the simulation. So in this study, heat transfer differential equation and BWR/Ideal state equation are used to calculate the pressure of gas spring which is changing with time. The numerical analysis showed that the pressure of gas spring forms a hysteresis loop in the both of the state equations. But the peak pressure value of BWR equation over 0.1Hz frequency are higher than that of adiabatic process. And the test results showed that the differences between test results and ideal gas equation are smaller than those of BWR equation, so the ideal equation is more accurate than BWR equation in this case.

A Design of Adaptive Equalizer for Terrestrial Digital Television Receivers (지상파 디지털 TV 수신기의 적응등화기 설계)

  • 정진희;김정진;권용식;장용덕;정해주
    • Journal of Broadcast Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-162
    • /
    • 2003
  • This paper describes a structure of adaptive equalizer to improve reception performance of ATSC digital television (DTV) for 8-VSB receivers. There are many strong and dynamic echoes affecting reliable reception of DTV signal. Conventional DFE based least mean square (LMS) algorithm is readily implemented and has good Performance. There are still problems to be solved, however, in handling strong echoes and indoor reception. In this paper, structure of adaptive equalizer to mitigate these Problems in strong multipath interference conditions and indoor reception environment is first presented. Methods to reduce error propagation effects on DFE and initialization scheme of filter coefficients for fast convergence are then introduced. Computer simulation results prove that an adaptive equalizer with proposed design methods can combat with Brazil Ensemble and the Threshold of Visibility(TOV) is improved.

Study on Tactical Target Tracking Performance Using Unscented Transform-based Filtering (무향 변환 기반 필터링을 이용한 전술표적 추적 성능 연구)

  • Byun, Jaeuk;Jung, Hyoyoung;Lee, Saewoom;Kim, Gi-Sung;Kim, Kiseon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.96-107
    • /
    • 2014
  • Tracking the tactical object is a fundamental affair in network-equipped modern warfare. Geodetic coordinate system based on longitude, latitude, and height is suitable to represent the location of tactical objects considering multi platform data fusion. The motion of tactical object described as a dynamic model requires an appropriate filtering to overcome the system and measurement noise in acquiring information from multiple sensors. This paper introduces the filter suitable for multi-sensor data fusion and tactical object tracking, particularly the unscented transform(UT) and its detail. The UT in Unscented Kalman Filter(UKF) uses a few samples to estimate nonlinear-propagated statistic parameters, and UT has better performance and complexity than the conventional linearization method. We show the effects of UT-based filtering via simulation considering practical tactical object tracking scenario.

Comparisons of Experimental Designs and Modeling Approaches for Constructing War-game Meta-models (워게임 메타모델 수립을 위한 실험계획 및 모델링 방법에 관한 비교 연구)

  • Yoo, Kwon-Tae;Yum, Bong-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.59-74
    • /
    • 2007
  • Computer simulation models are in general quite complex and time-consuming to run, and therefore, a simpler meta-model is usually constructed for further analysis. In this paper, JANUS, a war-game simulator, is used to describe a certain tank combat situation. Then, second-order response surface and artificial neural network meta-models are developed using the data from eight different experimental designs. Relative performances of the developed meta-models are compared in terms of the mean squared error of prediction. Computational results indicate that, for the given problem, the second-order response surface meta-model generally performs better than the neural network, and the orthogonal array-based Latin hypercube design(LHD) or LHD using maximin distance criterion may be recommended.

Securing Cooperative Spectrum Sensing against Rational SSDF Attack in Cognitive Radio Networks

  • Feng, Jingyu;Zhang, Yuqing;Lu, Guangyue;Zhang, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Cooperative spectrum sensing (CSS) is considered as a powerful approach to improve the utilization of scarce radio spectrum resources. However, most of CSS schemes assume all secondary users (SU) are honest, and thus offering opportunities for malicious SUs to launch the spectrum sensing data falsification attack (SSDF attack). To combat such misbehaved behaviors, recent efforts have been made to trust schemes. In this paper, we argue that powering CSS with traditional trust schemes is not enough. The rational SSDF attack is found in this paper. Unlike the simple SSDF attack, rational SSDF attackers send out false sensing data on a small number of interested primary users (PUs) rather than all PUs. In this case, rational SSDF attackers can keep up high trustworthiness, resulting in difficultly detecting malicious SUs in the traditional trust schemes. Meanwhile, a defense scheme using a novel trust approach is proposed to counter rational SSDF attack. Simulation results show that this scheme can successfully reduce the power of rational SSDF, and thus ensure the performance of CSS.

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

A Model of Military Helicopter Pilot Scheduling (군용 헬리콥터 조종사 스케줄링 모형)

  • Kim, Joo An;Lee, Moon Gul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.150-160
    • /
    • 2020
  • In this paper, we introduce a pilot's scheduling model which is able to maintain and balance their capabilities for each relevant skill level in military helicopter squadron. Flight scheduler has to consider many factors related pilot's flight information and spends a lot of times and efforts for flight planning without scientific process depending on his/her own capability and experience. This model reflected overall characteristics that include pilot's progression by basis monthly and cumulative flight hours, operational recent flight data and quickly find out a pinpoint areas of concern with respect to their mission subjects etc. There also include essential several constraints, such as personnel qualifications, and Army helicopter training policy's constraints such as regulations and guidelines. We presented binary Integer Programming (IP) mathematical formulation for optimization and demonstrated its effectiveness by comparisons of real schedule versus model's solution to several cases experimental scenarios and greedy random simulation model. The model made the schedule in less than 30 minutes, including the data preprocessing process, and the results of the allocation were more equal than the actual one. This makes it possible to reduce the workload of the scheduler and effectively manages the pilot's skills. We expect to set up and improve better flight planning and combat readiness in Korea Army aviation.

A Study on Reinforcement Learning Method for the Deception Behavior : Focusing on Marine Corps Amphibious Demonstrations (강화학습을 활용한 기만행위 모의방법 연구 : 해병대 상륙양동 사례를 중심으로)

  • Park, Daekuk;Cho, Namsuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.390-400
    • /
    • 2022
  • Military deception is an action executed to deliberately mislead enemy's decision by deceiving friendly forces intention. In the lessons learned from war history, deception appears to be a critical factor in the battlefield for successful operations. As training using war-game simulation is growing more important, it is become necessary to implement military deception in war-game model. However, there is no logics or rules proven to be effective for CGF(Computer Generated Forces) to conduct deception behavior automatically. In this study, we investigate methodologies for CGF to learn and conduct military deception using Reinforcement Learning. The key idea of the research is to define a new criterion called a "deception index" which defines how agent learn the action of deception considering both their own combat objectives and deception objectives. We choose Korea Marine Corps Amphibious Demonstrations to show applicability of our methods. The study has an unique contribution as the first research that describes method of implementing deception behavior.