• Title/Summary/Keyword: Column study

Search Result 5,277, Processing Time 0.033 seconds

A case study of reinforced concrete short column under earthquake using experimental and theoretical investigations

  • Chen, Chen-Yuan;Liu, Kuo-Chiang;Liu, Yuh-Wehn;Huang, Wehn-Jiunn
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • The purpose of this paper is to carry out both experimental and theoretical investigations of R.C. short column subjected to horizontal forces under constant compressive loading. Eight specimens with section of 40 cm ${\times}$ 40 cm, height 40 cm and 50 cm and different type hoop were used of the steel cage to detect the seismic behavior of reinforced concrete short columns. Hoop spacing of column, strength of concrete, and the axial load of experiments were the three main parameters in this test. A series of equations were derived to reveal the theory could be used on analysis short column, too. Through test failure model of R.C short column being established, the type of hoop affects the behavior R.C short column in ductility rather than in strength. And the effect of analysis by Truss Model is evident and reliable in shear failure model of short column.

Experimental Study on Aseismic Performance Existing School Buildings due to the Steel Reinforcement (강재 보강에 따른 기존 학교건축물의 내진성능에 관한 실험적 연구)

  • Lee, Ho;Park, Sung-Moo;Kwon, Young-Wook;Byeon, Sang-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.45-55
    • /
    • 2013
  • The core aim of this paper is to empirically scrutinize a strength characteristic and ductility of the beam-column frame of reinforced with steel subjected to the cyclic lateral load. First and foremost, I the author embarks upon making four prototypes vis-$\grave{a}$-vis this research. Through this endeavour, the author has analysed cyclic behavior, fracture shape, ductility and energy dissipation of the normal beam-column frame and a beam-column frame of reinforced with steel. In addition, the survey has revealed the exact stress transfer path and the destructive mechanism in order to how much a beam-column frame of reinforced with steel has resistance to earthquake regarding all types of building, as well as school construction. To get the correct data, the author has compared the normal beam-column frame and three types of the beam-column frame of reinforced with steel following these works, the characteristic of cyclic behavior, destructive mechanism, ductility, and Energy dissipation of normal beam-column frame and a beam-column frame of reinforced with steel have been examined clearly.

A Study on the Piercing Column of Terunobu Fujimori Architecture (후지모리 테루노부 건축의 돌출기둥에 관한 연구)

  • Kim, Hyon-Sob
    • Journal of architectural history
    • /
    • v.21 no.6
    • /
    • pp.35-44
    • /
    • 2012
  • This paper aimed at investigating into the origin and meaning of the Japanese architect Terunobu Fujimori's 'piercing column', and drew a conclusion as follows. First, the piercing column that made its first appearance in his architect debut work Jinchokan Moriya Historical Museum (1991) was conceived unexpectedly from pencil lines on a sketch that went through over the building's roof. And the tree-like natural treatment of the column's surface was influenced by Takamasa Yoshizaka's description of a Mongolian mud-house. Second, most of piercing columns in his later works have nothing to do with a structural role as in Jinchokan, but were designed for a visual effect and as a symbolic gesture. Again, they allude to a tree in nature through a roughly peeling treatment of the surface. Third, considering his ideas in History of Humankind and Architecture (2005), his column could be related to a universal origin of architecture and a symbol of the sun-god faith, and in particular to independent columns of Japanese Shito shrines, such as 'Onbashira' in Suwa and 'Iwanebashira' in Izumo. That is to say, the Fujimori column is a medium that implies the animistic nature-faith of Japan. Nevertheless, Fujimori's naturalism hints at a disquieting quality through an intentional artificiality and a provocative conflict between structure and finish of a building, which might be one aspect of the modern condition, 'uncanny'.

Determination of Allantoin in Dioscorea Rhizoma by High Performance Liquid Chromatography Using Cyano Columns

  • Yoon, Kee-Dong;Yang, Min-Hye;Chin, Young-Won;Park, Ju-Hyun;Kim, Jin-Woong
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • An easy and reliable HPLC method was developed to determine allantoin in Dioscorea Rhizoma using cyano columns. Qualitative and quantitative analyses of allantoin were performed successfully by cyano columns (YMC-Pack CN column, Zorbax SB-CN column and Discovery$^{(R)}$ Cyano column). The intraday precision were 0.58 - 3.33% for YMC-Pack CN, 0.41 - 2.20 for Zorbax SB-CN and 0.45 - 1.93% Discovery$^{(R)}$ Cyano columns, while interday variations were 0.09 - 1.84%, 0.04 - 2.59% and 0.87 - 5.18% for YMC-Pack CN, Zorbax SB-CN and Discovery$^{(R)}$ Cyano columns. The recoveries of allantoin were in the range at 98.8 - 102.6% (RSD 1.1 - 1.6%) for YMC-Pack CN column, 99.7 - 110.5% (RSD 1.3 - 4.9%) for Zorbax SB-CN column, and 97.2 - 110.1% (RSD 1.8 - 5.7%) for Discovery$^{(R)}$ Cyano column. The contents of allantoin in four Dioscorea Rhizoma samples were determined by cyano columms and ranged at 4.1-7.1 mg/g dry weight. The present study indicated that HPLC method using cyano column for determining allantoin is a reliable method and this method can be applied to verify allantoin in Dioscorea Rhizoma.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

A mathematical steel panel zone model for flanged cruciform columns

  • Saffari, Hamed;Sarfarazi, Sina;Fakhraddini, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.851-867
    • /
    • 2016
  • Cruciform sections are an appropriate option for columns of orthogonal moment resisting frames for equal bending strength and stiffness about two main axes and the implementation is easier for continuity plates. These columns consist of two I-shaped sections, so that one of them is cut out in middle and two generated T-shaped sections be welded into I-shaped profile. Furthermore, in steel moment frames, unbalance moment at the beam-column connection leads to shear deformation in panel zone. Most of the obtained relations for panel zone strength derived from experimental and analytical results are on I-shaped columns with almost thin flanges. In this paper, a parametric study has been carried out using Finite Element Method (FEM) with effective parameters at the panel zone behavior. These parameters consist of column flange thickness, column web thickness, and thickness of continuity plates. Additionally, a mathematical model has been suggested to determine strength of cruciform column panel zone and has been shown its accuracy and efficiency.

Restoring Force Characteristics of Column Yield Type Steel Rahmen (기둥 항복형 철골라멘의 복원력 특성)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.2
    • /
    • pp.44-51
    • /
    • 2004
  • It is generally known in seismic design that the beam yield type frames have more advantages than column yield type of which damage is likely to concentrate to any story. However we may design a building as a beam yield type, it becomes actually a column yield type collapse mode for slab floor diaphragm effect. Considering these points, the column yield type frames are selected and designed as the specimens. The object of this study is to grasp quantitatively the restoring force characteristic values and to estimate the seismic performances of column yield type steel rahmen.

  • PDF

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.