• Title/Summary/Keyword: Column Height

Search Result 392, Processing Time 0.022 seconds

The Effect of Column Height on Sludge-Water Interface Height Change Model (슬러지계면층높이변화모델에서 컬럼높이에 대한 영향)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.265-272
    • /
    • 2006
  • While sludge settles down in a column, sludge settling characteristic is influenced by effect parameters, interparticle force, wall effect etc. As the height of a column changes, the settling velocity of sludge-water interface changes, too. At lower sludge concentration, particular effect was not observed by the difference of column height, however it was observed that settleability of sludge was greatly influenced by column height when sludge settling was poor or sludge concentration was high. It is therefore required to consider the effect of column height when the power model for sludge interface settling is established. In the tests, there was hardly any $SVI_{ts}$(SVI after "t" minutes) difference in each column after 10min at $1.5kg/m^3$ of sludge concentration. When sludge concentration was at $2.5kg/m^3$, $SVI_{ts}$ tended to be constant after 20min. At $3.5kg/m^3$, $SVI_{ts}$ increased to 30minuets. The purpose of this work is to establish the correction factor that is able to compensate the errors derived from each different height of column.

A Study on the Front Elevation Proportion System in Traditional Housing 'An-Chae' - Focused on the Middle-High Classes' Housing in Jeonnam District - (전통주거안채의 정면비례체계에 관한 연구 - 전남지방 중.상류 주택을 중심으로 -)

  • Park, Ji-Min;Cheon, Deuk-Youm
    • Journal of architectural history
    • /
    • v.14 no.4 s.44
    • /
    • pp.73-86
    • /
    • 2005
  • The purpose of this study is to prove the correlations among various factors what determined to formation of front elevation proportion system through making an actual survey and investigating. According to the analysis of them, we make conclusions as follows; 1, On the assumption that average distance of 1Kan(間) is 1, the height of foundation is 0.21, the height of floor from foundation is 0.24, the height of normal column from floor is 0.85, the height of eaves from foundation is 1.10. 2. Southeast faced buildings are wider than southwest faced buildings in the distance of 1Kan (間) in the range of $110{sim}220mm$. The height of foundation and floor in the southeast faced buildings are higher than those in southwest faced buildings beside the height of normal column, eaves, high column in the southwest faced buildings are higher than those in southeast faced buildings. 3. As number of front Kan(間) increases, the distance of 1Kan(間) decrease and the height of eaves and high column(高柱) increases. This is cause of making a maximum needed inner space by increasing the distance of 1Kan(間). This is an wisdom for living from ancestors. 4. As number of Dori(道里) increases, the distances of 1Kan are nearly same but the height of eaves and high column(高柱) increases about 300mm, This is a natural result from an increasing of building scale. 5. The distance of 1Kan(間) in later 19C building is most wide but, the unit heights are minimal average values at year 1900 as a reference mark. After this, the height of normal column, eaves, high column are higher about $170{sim}330mm$. 6. The number of Kan in front elevation, Dori(道里), and direction of building have correlations each other in proportion system of traditional housing An-Chae with significant level, p<0.05.

  • PDF

Prediction of Sludge-Water Interface Height Change in Batch Column (Batch Column에서의 슬러지계면층 높이변화 예측)

  • Park, Suk Gyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.156-163
    • /
    • 2006
  • While sludge is settling in batch column, sludge concentration becomes high. Because the characteristic of sludge settling changes in function of time due to the sludge concentration change, the sludge settling velocity changes too. Also, because the sludge settling characteristic is influenced by a physical characteristic of sludge and a column height etc, it is difficult to exactly measure the sludge settling characteristic. Although the sludge volume indexes, SVI, SSVI and $SSVI_{3.5}$, are used to predict sludge settling characteristic, these indexes are not reliable values. Because the previously established models for sludge settling velocity predict the sludge settling velocity only, it is difficult to predict sluge-water interface height by using those models. The purpose of this experiment is to establish the empirical model which predicts the sludge interface height change with respect to the sludge physical characteristic and the settling condition.

A Study on the Flow and Control Characteristics of Magneticfluid in Actuator (액추에이터에서의 자성유체 제어 및 유동 특성에 관한 연구)

  • Kim, Joong;Chun, Un-hack;Lee, Hee-Sang;Lee, Bong-Gyu;Hwang, Seung-Sik;Oh, Chang-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.258-267
    • /
    • 1999
  • The aim of the study is to provide fundamental information for the development of magneticfluid actuator. To achieve the aim, the force and dynamic characteristics of magenticfluid are investigated by experiment for the various of tube diameter, height and position of magneticfluid column in magneticfield according to supplied voltage of solenoid coil, wave form and frquency. From this study, actuating force of magneticfluid is generated by magneticfield. The magnitude of force increases as the intensity of magneticfield becomes strong and the center of magneticfield becomes lower than the center of magneticfluid column. And the force of magneticfluid relates to the volume of magneticfluid more than the height and diameter. The response delay time decreases as the height of magmeticfluid more than the height and diameter. The response delay time decrease as the height of magneticfluid column becomes longer and the center of magneticfield becomes lower than the center of magniticfluid column. But, the approaching time increases as supplied voltage becomes higher and the center of magneticfiled becomes higher than the center of magniticfluid column. The frequency generating maximum force is 1Hz and the critical frequency is about 4Hz.

  • PDF

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu;Dongang Li;Feng Yu;Yuan Fang;Guosheng Xiang;Zilong Li
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.19-36
    • /
    • 2023
  • An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.

Experimental Study on the Effective Joint Width of the SRC Column-Steel Beam Joint (철골철근콘크리트 기둥-철골 보 접합부의 유효폭에 관한 실험적 연구)

  • 연선아;김승훈;서수연;이리형;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.405-410
    • /
    • 2001
  • To investigate factors influencing the effective width of. SRC column-steel beam joint resisting the moment as strut, six specimens are designed and tested. Parameters in the test are column width, beam height and horizontal tie within beam depth. From the test, using either wide column width or ties, strength and stiffness of joint were developed. The lower beam height the specimens showed the lower moment.

  • PDF

Onboard CO2 Capture Process Design using Rigorous Rate-based Model

  • Jung, Jongyeon;Seo, Yutaek
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.168-180
    • /
    • 2022
  • The IMO has decided to proceed with the early introduction of EEDI Phase 3, a CO2 emission regulation to prevent global warming. Measures to reduce CO2 emissions for ships that can be applied immediately are required to achieve CO2 reduction. We set six different CO2 emission scenarios according to the type of ship and fuel, and designed a monoethanolamine-based CO2 capture process for ships using a rate-based model of Aspen Plus v10. The simulation model using Aspen Plus was validated using pilot plant operation data. A ship inevitably tilts during operation, and the performance of a tilted column decreases as its height increases. When configuring the conventional CO2 capture process, we considered that the required column heights were so high that performance degradation was unavoidable when the process was implemented on a ship. We applied a parallel column concept to lower the column height and to enable easy installation and operation on a ship. Simulations of the parallel column confirmed that the required column height was lowered to less than 3 TEU (7.8 m).

Characteristics of Settling and Consolidation Behavior for Non-Plastic Dredged Soils (비소성 준설토의 침강-압밀 거동 특성)

  • Park, Yun-Gyun;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.251-261
    • /
    • 2004
  • A series of column test with a silty marine soil mixed with Jumunjin Standard Sand were performed to investigate the characteristics of settling and consolidation of non-plastic dredged soils. Column tests were carried out by using the separable column to measure the grain size distribution of consolidated layer. Column tests were performed with changing the mixing ratio of Jumunjin Standard Sand to the silty marine soil, initial water content of slurry and initial height of slurry. Height of interface of slurry was monitored during tests and grain size distribution tests were carried out after finishing tests. Influencing factors on the particle segregation, eventually to the characteristics of settling and consolidation of non-plastic soil, were analyzed on the thesis of test results. As results of column tests, the mixing ratio of sand to the silty marine soil and the initial water content of slurry were known to affect the characteristics of settling and consolidation resulted in significant particle segregation of slurry. Initial height of slurry was found not to affect seriously to particle segregation.

  • PDF