• Title/Summary/Keyword: Column Fracture

Search Result 172, Processing Time 0.024 seconds

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Deformation Capacity of Steel Moment Connections with RHS Column (각형강관 기둥을 가진 철골모멘트 접합부의 변형능력)

  • Kim, Young-Ju;Oh, Sang-Hoon;Ryu, Hong-Sik
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.249-258
    • /
    • 2006
  • In this paper, deformation capacity of steel moment connections with RHS column was investigated. Initially, non-linear finite element analysis of five bate steel beam models was conducted. The models were designed to have different detail at their beam-to-column connection, so that the flexural moment capacity was different respectively. Analysis results showed 4hat the moment transfer efficiency of the analytical model with RHS-column was poor when comparing to model with WF(Wide flnage)-column due to out-of-plane deformation of the RHS-column flange. The presence of scallop and thin plate of RHS column was also a reason of the decrease of moment transfer efficiency, which would result in a potential fracture of tile steel beam-to-column connections. Further test on beam-to-column connections with RHS column revealed that the moment transfer efficiency of a beam web decreased due to the out-of-plane deformation of column flange, which led to premature failure of the connection.

  • PDF

Three-column reconstruction through the posterior approach alone for the treatment of a severe lumbar burst fracture in Korea: a case report

  • Woo Seok Kim;Tae Seok Jeong;Woo Kyung Kim
    • Journal of Trauma and Injury
    • /
    • v.36 no.3
    • /
    • pp.290-294
    • /
    • 2023
  • Generally, patients with severe burst fractures, instability, or neurological deficits require surgical treatment. In most cases, circumferential reconstruction is performed. Surgical methods for three-column reconstruction include anterior, lateral, and posterior approaches. In cases involving an anterior or lateral approach, collaboration with general or thoracic surgeons may be necessary because the adjacent anatomical structures are unfamiliar to spinal surgeons. Risks include vascular or lumbar plexus injuries and cage displacement, and in most cases, additional posterior fusion surgery is required. However, the posterior approach is the most common and anatomically familiar approach for surgeons performing spinal surgery. We present a case in which three-column reconstruction was performed using only the posterior approach to treat a patient with a severe lumbar burst fracture.

Seismic Performance of Existing Welded Steel Moment Connections to Built-up Box Columns (기존 용접형 철골 박스기둥 접합부의 내진성능)

  • Kim, Tae-Jin;Stojadinovic, B.;Whittaker, A.S.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.25-32
    • /
    • 2006
  • In this study the seismic performance of welded steel moment connections to built-up box columns in the existing building built before 1994 Northridge earthquake was evaluated by cyclic tests. According to the test results, the pre-Northridge steel moment connections to the box columns also suffered from brittle fracture similar to that in the H-shaped column connections. However, the flange force transfer mechanism of the box column connections was substantially different from that of the H-shaped column connections, and the patterns of crack propagation may be changed due to the shape of the box column. Therefore, it is required to develop proper details for the box column connections instead of using the research results for H-shaped column connections in order to enhance the seismic performance the connections.

Evaluation of Moment Transfer Efficiency According to the Connection Length of the Column Flange and the Beam Web of the H-beam Column Connection (H형강 보-기둥 접합부의 보 웨브 단부접합길이에 따른 모멘트전달효율 평가)

  • Hong, Young-Ju;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.193-203
    • /
    • 2022
  • In this study, in order to compare the seismic performance of steel structure beam-column connection details and non-scallop connection details mainly used in Korea, a full-scale static cyclic loading test and FEM analysis were conducted through the same modeling as the experiment. For quantitative numerical comparison, the strain concentration ratio and moment transfer efficiency used in previous studies were cited. As the welding area of the beam web decreased, the deformation rate of the beam flange increased, and the plastic deformation capacity according to the rotation angle decreased or brittle fracture occurred. Comparing the analysis results with the experimental results, the possibility of brittle fracture tended to increase when the web welding ratio for the total cross-sectional area of H-shaped fell below 60%.

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

A Clinical Observation of the Traumatic Sternal Fracture (흉골 골절에 대한 임상적 고찰)

  • 심재영
    • Journal of Chest Surgery
    • /
    • v.23 no.5
    • /
    • pp.916-921
    • /
    • 1990
  • Clinical observations were performed on 17 cases of the traumatic sternal fracture, those were admitted and treated at the department of thoracic and cardiovascular surgery in Chosun University Hospital during the past 6 years 5months period from January 1983 to May 1989. Obtained results were as follows: 1. The frequency was about 4.8% of the nonpenetrating chest trauma. 2. The ratio of male to female was 16: 1 in male predominance and age distribution was from 24 to 62 years old. 3. The common cause were high decelerating injury [impact of the steering column] and falling down[more than 3 m in high]. 4. The most common fracture site was sternal body and next was sternomanubrial junction. 5. Associated intrathoracic organ injuries were cardiac contusion [6 cases], hemopneumothorax[1 Case], mediastinal bleeding[1 case], and thoracic cage and extrathoracic organ injuries were rib fracture, head injuries, thoracic spinal fracture, and long bone fracture. 6. Abnormal EGG findings were sinus bradycardia[1 case], bundle branch block [2 cases], and sinus tachycardia[3 cases]. 7. The operative reduction and fixation was necessary in only one case and the others were treated with conservative treatment.

  • PDF

Experimental and numerical study on progressive collapse of composite steel-concrete frames

  • Jing-Xuan Wang;Ya-Jun Shen;Kan Zhou;Yong Yang
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.531-548
    • /
    • 2024
  • This paper presents an experimental investigation into the progressive collapse behavior of composite steel-concrete frames under various column removal scenarios. This study involves testing two two-bay, two-story composite frames featuring CFST columns and profiled steel decking composite slabs. Two removal scenarios, involving the corner column and middle column, are examined. The paper reports on the overall and local failure modes, vertical force-deformation responses, and strain development observed during testing. Findings indicate that structural failure initiates due to fracture and local buckling of the steel beam. Moreover, the collapse resistance and ductility of the middle column removal scenario surpass those of the corner column removal scenario. Subsequent numerical analysis reveals the significant contribution of the composite slab to collapse resistance and capacity. Additionally, it is found that horizontal boundary conditions notably influence the collapse resistance in the middle column removal scenario only. Finally, the paper proposes a simplified calculation method for collapse resistance, which yields satisfactory predictions.

Diagnostic Radiology and Conservative Management of L1 Lumbar Spine with Compression Fracture (L1 요추 압박골절에 대한 진단방사선학 및 보존적 치료)

  • 김재웅
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 1998
  • Diagnostic radiology and conservative management for S75 patient with L1 lumbar fracture by traffic accidents were discussed with references, and then the obtained results were as follows ; 1. Wedging compression fractures with 10% deformity was confirmed at anterior vertebral body of L1 lumbar spine through lateral plain X-ray film. 2. Irregular bony fractures were observed at anterior vertebral body of L1 lumbar spine by CT scans, anatomically T12-L1 sites showed highly frequency of injuries, Denis's fracture type was classified as multiple compression fracture at anterior column without abnormal middle and posterior column, also no Cobb's angle, and then Frankel's neurological classification was E grade. 3. Orthopaedic treatments were performed with conservative methods. With rest on the bed, anti-in-flammatory medication, electrolyte and nutritional solution, the pain diminished. 4. After 3 weeks, rehabilitation was worked with putting on polyethylene back corset, although pains remained slightly until after 8 weeks, thereafter the spine showed gradually stability.

  • PDF