• 제목/요약/키워드: Colorimetric Sensor

검색결과 49건 처리시간 0.026초

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

"Turn-on" type colorimetric/fluorimetric probe for selective detection of Cu2+ at neutral pH condition

  • Lee, Hyun Jung;Saleem, Muhammad;Lee, Ki Hwan
    • Rapid Communication in Photoscience
    • /
    • 제4권4호
    • /
    • pp.88-90
    • /
    • 2015
  • The design and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of rhodamine B based fluorogenic and chromogenic receptor for selective copper detection in the complete organic or mixed aqueous-organic media at neutral pH under ambient condition. The ligand exhibited the remarkable increment in the fluorescence emission and UV-visible absorption signal intensities at 587 and 547 nm, respectively, on induction of copper ion while the ligand solution remain completely silent on addition of varieties of other metal ions.

2-Dimensional colloidal micropatterning of cholesteric liquid crystal microcapsules for temperature-responsive color displays

  • Lee, Woo Jin;Kim, Bohyun;Han, Sang Woo;Seo, Minjeong;Choi, Song-Ee;Yang, Hakyeong;Kim, Shin-Hyun;Jeong, Sohee;Kim, Jin Woong
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.393-398
    • /
    • 2018
  • This work offers a promising approach for development of a temperature-responsive colorimetric display platform. For this purpose, uniform thermochromic microcapsules consisting of a cholesteric liquid crystal (CLC) core and a thin polyurethane shell layer were fabricated by conducting in-situ condensation polymerization at the interface of monodisperse CLC-in-water emulsion drops. Colloidal packing-driven microcapsule registry led to exact 2-dimensional positioning of CLC microcapsules into a holes-patterned flexible film stencil. Furthermore, we showed that the designated registry of different color types of CLC microcapsules on the stencil enabled development of a microwriting display technology capable of reversible text representation according to temperature change.

Real-Time Detection of Residual Free Chlorine and pH in Water Using a Microchannel Device

  • Kim, Sam-Hwan;Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.368-374
    • /
    • 2011
  • A microfluidic device for real-time monitoring of residual free chlorine and pH in water based on optical absorption is proposed. The device consists of a serpentine micromixer for mixing samples with a reagent, and a photodiode and light emitting diode(LED) for the detection of light absorbance at specific wavelengths, determined for specific reagent combinations. Spectral analyses of the samples mixed with N, N'-diethyl-p-phenylenediamine(DPD) reagent for chlorine determination and bromothymol blue(BTB) for pH measurement are performed, and the wavelengths providing the most useful linear changes in absorbance with chlorine concentration and pH are determined and used to select the combination of LED and photodiode wavelengths for each analyte. In tests using standard solutions, the device is shown to give highly reproducible results, demonstrating the feasibility of the device for the inexpensive and continuous monitoring of water quality parameters with very low reagent consumption.

전기화학적 방법의 TRC(Total residual chlorine) 측정 연구(II: Pt전극 이용) (The Determination of TRC using an Electrochemical Method (II: Pt electrode))

  • 이준철;박대원
    • 한국물환경학회지
    • /
    • 제30권3호
    • /
    • pp.304-310
    • /
    • 2014
  • The conventional methods for total residual chlorine such as iodometry and DPD colorimetric can cause secondary pollution due to additional agents, also have a wide error range. As for alternative, electrochemical method can measure TRC(Total residual chlorine), and is not required as additional agents, also very suitable for using the fields of ballast water because test time is relatively fast. Therefore, this study was investigated for changing charge by agitation, salt concentration, and temperature change. Charge showed differences based on changes of reduction peak with or without agitation. In contrast, TRC and charge were well correlated in constant agitation speed. As TRC and charge were analyzed with high correlations in constant salinity and temperature of ocean, thereby conductivity was firstly measured, and charge had high correlation for TRC in spite of changing salinity and temperature Pt electrode revealed high reliability ($r^2=0.960$) because it was rarely effected by TRC, On the other hand, Au electrode appeared inadequate ($r^2=0.767$) to use sensor in less than 1.0 ppm of TRC. For high accuracy and detection of TRC, Pt and Au electrodes for test time were, respectively, 14 and 22 seconds. As a result, Pt electrode was more valuable than Au electrode in terms of response time.

Post-harvest Technology for High Quality Rice in Japan

  • Ohtsubo, Kenichi
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 2003년도 제23차 추계총회 및 국제학술심포지움
    • /
    • pp.26-32
    • /
    • 2003
  • Rice is one of the most important cereals in the world. Japanese people use about 9 million tons of rice per you. We use rice for cooked rice as staple foods and for processing, such as rice wine (sake), rice crackers and miso fermentation, etc. Palatability, eating quality, of rice is evaluated by the sensory test and various kinds of physicochemical measurements. Japanese National Food Agency started the storage of 1.5 million tones of rice in 1996. We carried out the storage test using high quality rices since 1995 until 1996. As indices for the quality deteriorations of rice grains during the storage, germination ratio, enzyme activities, fat acidity, physical properties of cooked rice were clarified to be useful. We applied colorimetric method for the measurements of fat acidities in the place of titration method. Processing suitabilities of rice differ depending on the products. Low amylose rice is more suitable for soft rice crackers and high amylose rice is preferred more for rice noodle. Pre-cooked rice products, such as frozen cooked rice, retort-pouched rice and aseptic rice, are increasing recently in Japan. In addition to above-mentioned physico-chemical tests, NIR spectroscopy,“Midometer”and“Taste sensor”are novel and useful to evaluate eating quality and processing suitabolities. Recently, rice wholesalers and retailers have been obligated to display the name of cultivar, location of cultivation and the year of production of rice grains which they sell by the Japanese Agricultural Standard Law (JAS). In order to detect the dishonest labeling of rice cultivars, we developed new cultivar identification method based on DNA polymorphism.

  • PDF

병원성미생물 및 유해물질 검출을 위한 PDA 센서 (PDA Sensors for the Detection of Pathogenic Bacteria and Hazardous Substances)

  • 임민철;김영록
    • Journal of Dairy Science and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.43-49
    • /
    • 2011
  • The increasing number of analytes in concern and the alarming health and environmental consequences have required effective means of monitoring for safety control. Biosensors offer advantages as alternatives to conventional analytical methods because of their inherent specificity, simplicity, and quick response. Colorimetric biosensor, one of biosensor group, is one of the easiest and the most convenient methods because detection can be done using naked eye. Recently, a novel method for rapid detection and read-out of specific immunoassays with naked eye using polydiacetylene (PDA) was developed. Polydiacetylene has recently been in the limelight as a transducing materials because of its special features that allow optical transduction of sensory signals and inherent simplicity and ease of use in supramolecular chemistry. Various forms of PDA are used as a sensor platform for detection of various biological analytes such as viruses, DNA, proteins, bacteria and hazardous molecules.

  • PDF

종이 기반 전기화학 센서의 연구 동향 (A Review on Paper-based Electrochemical Sensors)

  • 서민지
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2024
  • 신체에 부착하는 웨어러블(wearable) 센서 및 현장 진단 검사(point-of-care testing)가 용이한 센서의 필요성이 부각되면서, 종이를 기반으로 하는 센서들이 활발히 연구되어왔다. 종이는 매우 저렴하면서도 가볍고 유연할 뿐만 아니라, 표면에 카본과 같은 전도성 물질 및 왁스와 같은 소수성 물질을 입히기 쉽다. 또한, 종이를 이루는 셀룰로오스 섬유에 의한 모세관 현상으로 외부 힘 없이 용액의 흐름을 유도할 수 있어 웨어러블 전기화학 센서의 플랫폼으로 특히 주목받고 있다. 이에 따라, 다양한 분석 물질들을 전기화학적인 방법으로 검출하는 종이 기반 센서들이 활발히 개발되어 왔다. 특히, 분석 물질에 따른 전류 값 이외에도, 전기화학 발광현상(electrochemiluminescence) 혹은 전기 변색 물질(electrochromic material)을 도입하여 시각적으로 데이터를 나타내는 센서들도 보고되어 왔다. 이 논문에서는 종이 기반 전기화학 센서들의 제작법 및 다양한 활용 전략을 사례 중심으로 소개하였다.

다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서 (Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools)

  • 박현규;박현규;정봉현
    • KSBB Journal
    • /
    • 제22권6호
    • /
    • pp.409-413
    • /
    • 2007
  • 양친성의 성질을 가진 폴리디아세틸렌 단량체를 이용한 센서는 주로 수용액 상태에서 리포좀이나 또는 다른 구조를 이용하였다. 폴리디아세틸렌은 수용액 상에서 쉽게 구조를 형성하는 장점과 여러 광학적인 특성을 가지고 있어서 다양한 목적물질의 검출을 가능하게 하였다. 디아세틸렌 단량체는 수 nm의 크기의 분자로서 LB 필름 제조 방법을 이용하면 아주 얇은 단분자층 또는 다분자층으로 필름을 형성할 수 있게 된다. 이렇게 형성된 필름은 수용액상에서 만들어진 구조체와 같은 성질을 가진다. 즉 무색으로 형성된 구조체들은 254 nm에 조사를 시키면 파란색으로 변하게 되며 650 nm 부근에서 최대 흡수 파장을 가지게 된다. 파란색으로 형성된 구조체는 다양한 외부환경 (온도, pH, 용매 등)이나 목적물질 (바이러스, 단백질, 항체, DNA, 펩타이드 등)의 결합으로 약하게는 보라색에서 강하게는 붉은색으로 변하게 된다. 색전이가 이루어진 수용액이나 필름에서는 파란색에서는 존재하지 않던 형광이 630 nm 부근에서 최대 방출 파장이 나타나기도 한다. 따라서 가시적인 방법이나 형광 검출 방법을 이용하면 색이 변한 정도에 따라 특이성의 정도를 결정할 수 있는 좋은 센서 기술이 될 것으로 사료된다. 목적 물질 검출에 대한 연구 이외에 대부분의 폴리디아세틸렌은 색전이가 이루어진 후 가역적인 현상을 보이지 않는다. 그러나 적절하게 치환된 관능기는 가역적인 성질을 부여하게 된다. 이런 성질들을 내포하면서 막대 모양과 같은 견고한 실리카 구조체의 형성에 적용할 수 있다는 연구 결과가 보고되고 있다. 그러나 구조체를 형성하는 단량체는 비특이적인 결합을 할 수 있는 관능기 (-COOH, $-NH_2$ 등)을 포함하고 있기 때문에 선택적인 센서의 개발을 위해서는 개선해야 할 부분이다. 결론적으로 보완된 다양한 구조체와 센서 적용 기술은 현재의 표지방식을 기반으로 하는 감지 기술을 대체할 수 있는 새로운 비표지 센서로의 적용이 가능할 것으로 여겨진다.