• 제목/요약/키워드: Colorimetric Detection

검색결과 99건 처리시간 0.029초

나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서 (Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye)

  • 정승화;조영범;김용신
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

Allosteric Probe-Based Colorimetric Assay for Direct Identification and Sensitive Analysis of Methicillin Resistance of Staphylococcus aureus

  • Juan Chu;Xiaoqin Zhao
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.681-688
    • /
    • 2024
  • The accurate and rapid detection of methicillin-resistance of Staphylococcus aureus (SA) holds significant clinical importance. However, the methicillin-resistance detection strategies commonly require complicated cell lysis and gene extraction. Herein, we devised a novel colorimetric approach for the sensitive and accurate identification of methicillin-resistance of SA by combining allosteric probe-based target recognition with self-primer elongation-based target recycling. The PBP2a aptamer in the allosteric probe successfully identified the target MRSA, leading to the initiation of self-primer elongation based-cascade signal amplification. The peroxidase-like hemin/G-quadruplex undergo an isothermal autonomous process that effectively catalyzes the oxidation of ABTS2- and produces a distinct blue color, enabling the visual identification of MRSA at low concentrations. The method offers a shorter duration for bacteria cultivation compared to traditional susceptibility testing methods, as well as simplified manual procedures for gene analysis. The overall amplification time for this test is 60 min, and it has a detection limit of 3 CFU/ml. In addition, the approach has exceptional selectivity and reproducibility, demonstrating commendable performance when tested with real samples. Due to its advantages, this colorimetric assay exhibits considerable potential for integration into a sensor kit, thereby offering a viable and convenient alternative for the prompt and on-site detection of MRSA in patients with skin and soft tissue infections.

환경색센서에 관한 기술 전망 (Propectives of Environmental Colorimetric-Sensors)

  • 김영훈;이병환
    • Korean Chemical Engineering Research
    • /
    • 제49권4호
    • /
    • pp.393-399
    • /
    • 2011
  • 지난 수십년 동안, 환경오염물질에 대한 광학적 전기화학적 검출 방법에 관한 다양한 연구가 진행되었다. 최근에는 저렴하고, 장치가 불필요한 육안 식별 가능한 환경색센서가 개발되고 있다. 시각적 정성분석은 대상물질에 대한 즉각적인 정보를 제공하여, 실시간 현장 분석이 가능하게 해준다. 또한 정량분석이 가능한 색센서에 대한 관심도 높아지고 있다. 환경색센서는 기상의 VOC, 액상의 중금속 분석용으로 주로 개발되고 있다. 이에 본 총설에서는 다양한 환경색센서의 활용분야를 살펴보고, 기존 색센서의 문제점을 파악한 다음 환경색센서 기술의 발전방향에 관하여 전망하였다.

Direct Detection of Water-dissolved Ammonia Using Paper-based Analytical Devices

  • Yeong Beom Cho;Duc Cuong Nguyen;Si Hiep Hua;Yong Shin Kim
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.67-74
    • /
    • 2023
  • A microfluidic paper-based analytical device (µPAD) is proposed for the selective detection of ammonia in water by using the modified Berthelot reagent and a fluidic channel consisting of hollow paper. The modified Berthelot reagents were uniformly dispersed in cyclohexane and then immobilized in a detection zone of the µPAD. The loading position of the reagents and the type of a sample flow channel were optimized to achieve a sensitive ammonia detection within a short analytical time. The NH3 µPAD exhibits a linear colorimetric response to the concentration of ammonia dissolved in water in the range of 1-100 mg L-1, and its limit-of-detection is 1.75 mg L-1. In addition, the colorimetric response was not influenced by the addition of 100 mg L-1 nitrogen containing compounds (sodium nitrate, sodium nitrite, uric acid, hydroxylamine, butylamine, diethylamine) or inorganic salts (NaCl, Na2HPO4), presenting the enough selectivity in the detection of water-dissolved ammonia against possible interferents.

비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼 (Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array)

  • 이준영;오승윤;김동민;김영웅;허정석;이대식
    • 센서학회지
    • /
    • 제33권2호
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출 (Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles)

  • 박무경;김경우;안동준;오민규
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.348-351
    • /
    • 2011
  • 본 연구에서는 폴리다이아세틸렌(polydiacetylene, PDA) 베시클을 이용하여 여러 가지 킬레이트제(chelating agent)를 쉽게 검출할 수 있는 센서 시스템을 개발하였다. 다른 센서들과 비교하여 PDA기반 센서는 많은 장점이 있다. 첫째로, 형광물질의 부착이 필요 없는 무표지 검출(label-free detection)이 가능하여 실험 절차가 간단하고 빠르다. 둘째로, PDA는 청색에서 외부 자극에 의해 적색으로 변화하는 색전이를 일으키므로 육안으로 쉽게 검출을 확인할 수 있었다. 끝으로, 특정 파장에서의 colorimetric response를 측정하여 각각의 킬레이트제의 농도에 따른 정량검출도 가능하다. 본 연구에서는 5가지 종류의 킬레이트제, 즉 EDTA, EGTA, NTA, DCTA, DTPA를 PDA 베시클과 반응시켰으며, 이중에서 EDTA, DCTA는 특히 강한 반응으로 PDA의 색전이를 유도함을 알 수 있었다. 본 연구를 통하여 PDA 베시클을 사용하여 어떠한 기계나 동력을 사용하지 않고 색전이를 이용하여 킬레이트를 성공적으로 검출할 수 있음을 보여주었다.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.

A New Chemosensing Ensemble for Colorimetric Detection of Oxalate in Water

  • Tang, Li-Jun;Liu, Ming-Hui
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3159-3162
    • /
    • 2010
  • To realize highly selective recognition of oxalate in water, a new chemosensing ensemble that behaves highly selective colorimetric recognition of oxalate in water at pH 7.4 has been developed. The ensemble was constructed by a pyrrole containing mononuclear copper complex and chromeazurol S. The ensemble shows a highly selective recognition of oxalate through an obvious color change from blue to yellow upon the addition of oxalate, whereas, other dicarboxylates such as malonate, succinate, fumarate, maleate, glutarate, adipate, phthalate, isophthalate and terephthalate do not induce any noticeable color changes. The oxalate recognition process is not significantly affected by other coexisting dicarboxylate.

Teaching a Known Molecule New Tricks: Optical Cyanide Recognition by 2-[(9-Ethyl-9H-carbazol-3-yl)methylene]propanedinitrile in Aqueous Solution

  • Tang, Lijun;Zhao, Guoyou;Wang, Nannan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3696-3700
    • /
    • 2012
  • The colorimetric and fluorescent cyanide recognition properties of 2-[(9-ethyl-9H-carbazol-3-yl)methylene]-propanedinitrile (1) in $CH_3CN-H_2O$ (2/1, v/v, HEPES 10 mM, pH = 7.0) solution were evaluated. The optical recognition process of probe 1 exhibited high sensitivity and selectivity to cyanide ion with the detection limit of $2.04{\times}10^{-6}$ M and barely interfered by other coexisting anions. The sensing mechanism of probe 1 is speculated to undergo a nucleophilic addition of cyanide to dicyanovinyl group present in compound 1. The colorimetric and fluorescent dual-modal response to cyanide makes probe 1 has a potential utility in cyanide detection.