DOI QR코드

DOI QR Code

A New Chemosensing Ensemble for Colorimetric Detection of Oxalate in Water

  • Tang, Li-Jun (College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University) ;
  • Liu, Ming-Hui (College of Chemistry and Chemical Engineering, Liaoning Key Laboratory for the Synthesis and Application of Functional Compounds, Bohai University)
  • Received : 2010.08.09
  • Accepted : 2010.08.19
  • Published : 2010.11.20

Abstract

To realize highly selective recognition of oxalate in water, a new chemosensing ensemble that behaves highly selective colorimetric recognition of oxalate in water at pH 7.4 has been developed. The ensemble was constructed by a pyrrole containing mononuclear copper complex and chromeazurol S. The ensemble shows a highly selective recognition of oxalate through an obvious color change from blue to yellow upon the addition of oxalate, whereas, other dicarboxylates such as malonate, succinate, fumarate, maleate, glutarate, adipate, phthalate, isophthalate and terephthalate do not induce any noticeable color changes. The oxalate recognition process is not significantly affected by other coexisting dicarboxylate.

Keywords

References

  1. Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419. https://doi.org/10.1021/cr010421e
  2. Suksai, C.; Tuntulani, T. Chem. Soc. Rev. 2003, 32, 192. https://doi.org/10.1039/b209598j
  3. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486. https://doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
  4. Wallington, T. J.; Kaiser, E. W.; Farrell, J. T. Chem. Soc. Rev. 2006, 35, 335. https://doi.org/10.1039/b410469m
  5. Gale, P. A. Acc. Chem. Res. 2006, 39, 465. https://doi.org/10.1021/ar040237q
  6. Fabbrizzi, L.; Licchelli, M.; Rabaioli, G.; Taglietti, A. Coord. Chem. Rev. 2000, 205, 85. https://doi.org/10.1016/S0010-8545(00)00239-3
  7. Niikura, K.; Metzger, A.; Anslyn, E. V. J. Am. Chem. Soc. 1998, 120, 8533. https://doi.org/10.1021/ja980990c
  8. Aït-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 11296. https://doi.org/10.1021/ja011905v
  9. Leung, D.; Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2008, 130, 12318. https://doi.org/10.1021/ja803806c
  10. Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986. https://doi.org/10.1021/ja052029e
  11. Vázquez, M.; Fabbrizzi, L.; Taglietti, A.; Pedrido, R. M.; González- Noya, A. M.; Bermejo, M. R. Angew. Chem. Int. Ed. 2004, 43, 1962. https://doi.org/10.1002/anie.200353148
  12. Lin, Y. S.; Tu, G. M.; Lin, C. Y.; Chang, Y. T.; Yen, Y. P. New. J. Chem. 2009, 33, 860. https://doi.org/10.1039/b811172c
  13. Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. Tetrahedron Lett. 2001, 42, 5053. https://doi.org/10.1016/S0040-4039(01)00916-9
  14. Yen, Y. P.; Ho, K. W. Tetrahedron Lett. 2006, 47, 1193. https://doi.org/10.1016/j.tetlet.2005.12.009
  15. Quinlan, E.; Matthews, S. E.; Gunnlaugsson, T. Tetrahedron Lett. 2006, 47, 9333. https://doi.org/10.1016/j.tetlet.2006.10.112
  16. Zhou, L. L.; Sun, H.; Li, H. P.; Wang, H.; Zhang, X. H.; Wu, S. K.; Lee, S. T. Org. Lett. 2004, 6, 1071. https://doi.org/10.1021/ol035818e
  17. Choi, M. K.; Kim, H. N.; Choi, H. J.; Yoon, J.; Hyun, M. H. Tetra hedron Lett. 2008, 49, 4522. https://doi.org/10.1016/j.tetlet.2008.05.055
  18. Shao, J.; Lin, H.; Lin, H. K. Talanta 2008, 75, 1015. https://doi.org/10.1016/j.talanta.2007.12.041
  19. Kim, H.-J.; Asif, R.; Chung, D. S.; Hong, J.-I. Tetrahedron Lett. 2003, 44, 4335. https://doi.org/10.1016/S0040-4039(03)00937-7
  20. Ryu, D.; Park, E.; Kim, D.-S.; Yan, S.; Lee, J. Y.; Chang, B.-Y.; Ahn, K. H. J. Am. Chem. Soc. 2008, 130, 2394. https://doi.org/10.1021/ja078308e
  21. Kim, H.; So, S. M.; Yen, C. P.; Vinhato, E.; Lough, A. J.; Hong, J.-I.; Kim, H.-J.; Chin, J. Angew. Chem. Int. Ed. 2008, 47, 8657. https://doi.org/10.1002/anie.200803116
  22. Kral, V.; Andrievsky, A.; Sessler, J. L. J. Am. Chem. Soc. 1995, 117, 2953. https://doi.org/10.1021/ja00115a041
  23. Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. Org. Lett. 2004, 4, 2449.
  24. Robertson, W. G.; Hughes, H. Scanning Microsc. 1993, 3, 391.
  25. Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R. H. Org. Lett. 2005, 7, 5825. https://doi.org/10.1021/ol052341t
  26. Zeng, Z. Y.; He, Y. B.; Wu, J. L.; Wei, L. H.; Liu, X.; Meng, L. Z.; Yang, X. Eur. J. Org. Chem. 2004, 2888.
  27. Raker, J.; Glass, T. E. J. Org. Chem. 2002, 67, 6113. https://doi.org/10.1021/jo025903k
  28. Linton, B. R.; Goodman, M. S.; Fan, E.; Arman, S. A.; Hamilton, A. D. J. Org. Chem. 2001, 66, 7313. https://doi.org/10.1021/jo010413y
  29. Ghosh, K.; Saha, I.; Masanta, G.; Wang, E. B.; Parish, C. A. Tetrahedron Lett. 2010, 51, 343. https://doi.org/10.1016/j.tetlet.2009.11.021
  30. Ghosh, K.; Masanta, G.; Chattopadhyay, A. P. Eur. J. Org. Chem. 2009, 4515.
  31. Singh, N.; Lee, G. W.; Jang, D. O. Tetrahedron 2008, 64, 1482. https://doi.org/10.1016/j.tet.2007.11.040
  32. Moriuchi, T.; Yoshida, K.; Hirao, T. Org. Lett. 2003, 5, 4285. https://doi.org/10.1021/ol030098x
  33. Ghosh, K.; Masanta, G. Tetrahedron Lett. 2008, 49, 2592. https://doi.org/10.1016/j.tetlet.2008.02.095
  34. Goswami, S.; Dey, S.; Jana, S. Tetrahedron 2008, 64, 6358. https://doi.org/10.1016/j.tet.2008.04.086
  35. Tang, L. J.; Park, J.; Kim, H. J.; Kim, Y.; Kim, S. J.; Chin, J.; Kim, K. M. J. Am. Chem. Soc. 2008, 130, 12606. https://doi.org/10.1021/ja804753n
  36. Fabbrizzi, L.; Licchelli, M.; Mancin, F.; Pizzeghello, M.; Rabaioli, G.; Taglietti, A.; Tecilla, P.; Tonellato, U. Chem. Eur. J. 2001, 7, 94. https://doi.org/10.1002/1521-3765(20010105)7:1<94::AID-CHEM94>3.0.CO;2-M
  37. Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963. https://doi.org/10.1021/ar9600796
  38. Wright, A. T.; Anslyn, E. V. Chem. Soc. Rev. 2006, 35, 14. https://doi.org/10.1039/b505518k
  39. Zhu, L.; Zhong, Z. L.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 4260. https://doi.org/10.1021/ja0435945
  40. Nguyen, B. T.; Anslyn, E. V. Coord. Chem. Rev. 2006, 250, 3118. https://doi.org/10.1016/j.ccr.2006.04.009
  41. Boiocchi, M.; Bonizzoni, M.; Fabbrizzi, L.; Piovani, G.; Taglietti, A. Angew. Chem. Int. Ed. 2004, 43, 3847. https://doi.org/10.1002/anie.200460036
  42. Boiocchi, M.; Bonizzoni, M.; Moletti, A.; Pasini, D.; Taglietti, A. New. J. Chem. 2007, 31, 352. https://doi.org/10.1039/b616492g
  43. Lee, J. H.; Park, J.; Lah, M. S.; Chin, J.; Hong, J.-I. Org. Lett. 2007, 9, 3729. https://doi.org/10.1021/ol071306e
  44. Tang, L. J.; Li, Y.; Zhang, H.; Guo, Z. L.; Qian, J. H. Tetrahedron Lett. 2009, 50, 6844. https://doi.org/10.1016/j.tetlet.2009.09.133
  45. Schmuck, C.; Bickert, V.; Merschky, M.; Geiger, L.; Rupprecht, D.; Dudaczek, J.; Wich, P.; Rehm, T.; Machon, U. Eur. J. Org. Chem. 2008, 324.
  46. Schmuck, C. Chem. Eur. J. 2000, 6, 709. https://doi.org/10.1002/(SICI)1521-3765(20000218)6:4<709::AID-CHEM709>3.0.CO;2-6
  47. Connors, K. A. Binding Constants-the Measurement of Molecular Complex Stability; John Wiley & Sons: New York, USA, 1987.
  48. Kim, S. Y.; Hong, J.-I. Tetrahedron Lett. 2009, 50, 1951. https://doi.org/10.1016/j.tetlet.2009.02.036

Cited by

  1. Highly selective and sensitive fluorescent sensing of oxalate in water vol.48, pp.55, 2012, https://doi.org/10.1039/c2cc33191h
  2. ) complexes of macrocyclic and open-chain pseudopeptidic ligands: synthesis, characterization and interaction with dicarboxylates vol.44, pp.28, 2015, https://doi.org/10.1039/C5DT01496D
  3. Selective recognition of oxalate in water: effect of pH on binding strength and sensing mechanisms vol.53, pp.82, 2017, https://doi.org/10.1039/C7CC06955C
  4. complex pp.15227235, 2017, https://doi.org/10.1002/bio.3410
  5. Fluorescent Recognition of Pyrophosphate in Water by a New Chemosensing ensemble vol.35, pp.8, 2010, https://doi.org/10.3184/174751911x13129777578197
  6. Colorimetric Recognition of Oxalate in Water by a New Carbazole-Zn(II) Based Chemosensing Ensemble vol.37, pp.9, 2010, https://doi.org/10.3184/174751913x13738775726772
  7. Recyclable chemosensor for oxalate based on bimetallic complexes of a dinucleating bis(iminopyridine) ligand vol.43, pp.21, 2010, https://doi.org/10.1039/c4dt00577e
  8. Development of a New Colorimetric Chemosensor for Selective Determination of Urinary and Vegetable Oxalate Concentration Through an Indicator Displacement Assay (IDA) in Aqueous Media vol.56, pp.3, 2010, https://doi.org/10.17113/ftb.56.03.18.5726
  9. A Simple Paper-based Colorimetric Device for Rapid and Sensitive Urinary Oxalate Determinations vol.34, pp.1, 2018, https://doi.org/10.2116/analsci.34.103