• Title/Summary/Keyword: Color-based tracking

Search Result 258, Processing Time 0.03 seconds

Appearance Based Object Identification for Mobile Robot Localization in Intelligent Space with Distributed Vision Sensors

  • Jin, TaeSeok;Morioka, Kazuyuki;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2004
  • Robots will be able to coexist with humans and support humans effectively in near future. One of the most important aspects in the development of human-friendly robots is to cooperation between humans and robots. In this paper, we proposed a method for multi-object identification in order to achieve such human-centered system and robot localization in intelligent space. The intelligent space is the space where many intelligent devices, such as computers and sensors, are distributed. The Intelligent Space achieves the human centered services by accelerating the physical and psychological interaction between humans and intelligent devices. As an intelligent device of the Intelligent Space, a color CCD camera module, which includes processing and networking part, has been chosen. The Intelligent Space requires functions of identifying and tracking the multiple objects to realize appropriate services to users under the multi-camera environments. In order to achieve seamless tracking and location estimation many camera modules are distributed. They causes some errors about object identification among different camera modules. This paper describes appearance based object representation for the distributed vision system in Intelligent Space to achieve consistent labeling of all objects. Then, we discuss how to learn the object color appearance model and how to achieve the multi-object tracking under occlusions.

Object Tracking Algorithm Using Weighted Color Centroids Shifting (가중 컬러 중심 이동을 이용한 물체 추적 알고리즘)

  • Choi, Eun-Cheol;Lee, Suk-Ho;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.236-247
    • /
    • 2010
  • Recently, mean shift tracking algorithms have been proposed which use the information of color histogram together with some spatial information provided by the kernel. In spite of their fast speed, the algorithms are suffer from an inherent instability problem which is due to the use of an isotropic kernel for spatiality and the use of the Bhattacharyya coefficient as a similarity function. In this paper, we analyze how the kernel and the Bhattacharyya coefficient can arouse the instability problem. Based on the analysis, we propose a novel tracking scheme that uses a new representation of the location of the target which is constrained by the color, the area, and the spatiality information of the target in a more stable way than the mean shift algorithm. With this representation, the target localization in the next frame can be achieved by one step computation, which makes the tracking stable, even in difficult situations such as low-rate-frame environment, and partial occlusion.

Multiple Vehicles Tracking via sequential posterior estimation (순차적인 사후 추정에 의한 다중 차량 추적)

  • Lee, Won-Ju;Yoon, Chang-Young;Lee, Hee-Jin;Kim, Eun-Tai;Park, Mignon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.40-49
    • /
    • 2007
  • In a visual driver-assistance system, separating moving objects from fixed objects are an important problem to maintain multiple hypothesis for the state. Color and edge-based tracker can often be 'distracted' causing them to track the wrong object. Many researchers have dealt with this problem by using multiple features, as it is unlikely that all will be distracted at the same time. In this paper, we improve the accuracy and robustness of real-time tracking by combining a color histogram feature with a brightness of Optical Flow-based feature under a Sequential Monte Carlo framework. And it is also excepted from Tracking as time goes on, reducing density by Adaptive Particles Number in case of the fixed object. This new framework makes two main contributions. The one is about the prediction framework which separating moving objects from fixed objects and the other is about measurement framework to get a information from the visual data under a partial occlusion.

Real-Time Vehicle Detector with Dynamic Segmentation and Rule-based Tracking Reasoning for Complex Traffic Conditions

  • Wu, Bing-Fei;Juang, Jhy-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.12
    • /
    • pp.2355-2373
    • /
    • 2011
  • Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.

The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality (비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정)

  • Lee, Sun-Hyoung;Hahn, Hern-Soo;Han, Young-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.155-166
    • /
    • 2012
  • This paper proposes a new method of estimating the hand pose through the Mean-Shift tracking algorithm using the fusion of color and depth information for marker-less augmented reality. On marker-less augmented reality, the most of previous studies detect the hand region using the skin color from simple experimental background. Because finger features should be detected on the hand, the hand pose that can be measured from cameras is restricted considerably. However, the proposed method can easily detect the hand pose from complex background through the new Mean-Shift tracking method using the fusion of the color and depth information from 3D sensor. The proposed method of estimating the hand pose uses the gravity point and two random points on the hand without largely constraints. The proposed Mean-Shift tracking method has about 50 pixels error less than general tracking method just using color value. The augmented reality experiment of the proposed method shows results of its performance being as good as marker based one on the complex background.

Real-Time Tracking for Moving Object using Neural Networks (신경망을 이용한 이동성 칼라 물체의 실시간 추적)

  • Choi, Dong-Sun;Lee, Min-Jung;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2358-2361
    • /
    • 2001
  • In recent years there have been increasing interests in real-time object tracking with image information. Since image information is affected by illumination, this paper presents the real-time object tracking method based on neural networks which have robust characteristics under various illuminations. This paper proposes three steps to track the object and the fast tracking method. In the first step the object color is extracted using neural networks. In the second step we detect the object feature information based on invariant moment. Finally the object is tracked through a shape recognition using neural networks. To achieve the fast tracking performance, this paper first has a global search of entire image and tracks the object through local search when the object is recognized.

  • PDF

Fixed-Wing UAV's Image-Based Target Detection and Tracking using Embedded Processor (임베디드 프로세서를 이용한 고정익 무인항공기 영상기반 목표물 탐지 및 추적)

  • Kim, Jeong-Ho;Jeong, Jae-Won;Han, Dong-In;Heo, Jin-Woo;Cho, Kyeom-Rae;Lee, Dae-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • In this paper, we described development of on-board image processing system and its process and verified its performance through flight experiment. The image processing board has single ARM(Advanced Risk Machine) processor. We performed Embedded Linux Porting. Algorithm to be applied for object tracking is color-based image processing algorithm, it can be designed to track the object that has specific color on ground in real-time. To verify performance of the on-board image processing system, we performed flight test using the PNUAV, UAV developed by LAB. Also, we performed optimization of the image processing algorithm and kernel to improve real-time performance. Finally we confirmed that proposed system can track the blue-color object within four pixels error range consistently in the experiment.

A Robust Multi-part Tracking of Humans in the Video Sequence (비디오 영상내의 사람 추적을 위한 강인한 멀티-파트 추적 방법)

  • 김태현;김진율
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2088-2091
    • /
    • 2003
  • We presents a new algorithm for tracking person in video sequence that integrates the meanshift iteration procedure into the particle filtering. Utilizing the nice property of convergence to the modes in the meanshift iteration we show that only a few sample points are sufficient, while in general the particle filtering requires a large number of sample points. Multi-parts of a person is tracked independently of each other based on the color Then, the similarity against the reference model color and the geometric constraints between multi-parts are reflected as the sample weights. Also presented is the computer simulation results, which show successful tracking even for complex background clutter.

  • PDF

Dynamic Manipulation of a Virtual Object in Marker-less AR system Based on Both Human Hands

  • Chun, Jun-Chul;Lee, Byung-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.618-632
    • /
    • 2010
  • This paper presents a novel approach to control the augmented reality (AR) objects robustly in a marker-less AR system by fingertip tracking and hand pattern recognition. It is known that one of the promising ways to develop a marker-less AR system is using human's body such as hand or face for replacing traditional fiducial markers. This paper introduces a real-time method to manipulate the overlaid virtual objects dynamically in a marker-less AR system using both hands with a single camera. The left bare hand is considered as a virtual marker in the marker-less AR system and the right hand is used as a hand mouse. To build the marker-less system, we utilize a skin-color model for hand shape detection and curvature-based fingertip detection from an input video image. Using the detected fingertips the camera pose are estimated to overlay virtual objects on the hand coordinate system. In order to manipulate the virtual objects rendered on the marker-less AR system dynamically, a vision-based hand control interface, which exploits the fingertip tracking for the movement of the objects and pattern matching for the hand command initiation, is developed. From the experiments, we can prove that the proposed and developed system can control the objects dynamically in a convenient fashion.

Vision-Based Indoor Object Tracking Using Mean-Shift Algorithm (평균 이동 알고리즘을 이용한 영상기반 실내 물체 추적)

  • Kim Jong-Hun;Cho Kyeum-Rae;Lee Dae-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.746-751
    • /
    • 2006
  • In this paper, we present tracking algorithm for the indoor moving object. We research passive method using a camera and image processing. It had been researched to use dynamic based estimators, such as Kalman Filter, Extended Kalman Filter and Particle Filter for tracking moving object. These algorithm have a good performance on real-time tracking, but they have a limit. If the shape of object is changed or object is located on complex background, they will fail to track them. This problem will need the complicated image processing algorithm. Finally, a large algorithm is made from integration of dynamic based estimator and image processing algorithm. For eliminating this inefficiency problem, image based estimator, Mean-shift Algorithm is suggested. This algorithm is implemented by color histogram. In other words, it decide coordinate of object's center from using probability density of histogram in image. Although shape is changed, this is not disturbed by complex background and can track object. This paper shows the results in real camera system, and decides 3D coordinate using the data from mean-shift algorithm and relationship of real frame and camera frame.