• 제목/요약/키워드: Color-based tracking

검색결과 255건 처리시간 0.032초

모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어 (Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots)

  • 나두영;노수희;문형필;정진우;김용태
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.470-477
    • /
    • 2009
  • 자기 자신의 형태를 변형하거나 물리적인 결합으로 재구성하여 새로운 환경에 적응하는 모듈형 자가 결합 로봇은 많은 연구가 필요한 분야이다. 본 논문에서는 물리적으로 결합 가능한 모듈형 로봇을 위한 영상기반의 자가 결합 제어기를 제안한다. 먼저 실시간 영상처리가 가능한 모듈형 로봇 플랫폼을 설계하고, 컬러기반 물체 인식 방법을 구현하였다. 모듈형 로봇은 자가 결합을 위해 결합될 로봇 근처의 부목표점까지 장애물들을 회피하면서 주행해 가야 한다. 본 논문에서는 부 목표점의 추적을 위하여 영상처리를 통해 얻은 거리와 방향각 정보들을 사용한 퍼지 주행 제어기와 장애물 회피를 위한 퍼지 제어기를 제안하고, 제안된 퍼지 제어기들과 로봇의 절대 거리 및 방향각 정보를 사용하여 모듈형 로봇을 위한 자가 결합제어기를 구현하였다. 실제 제작된 두 대의 모듈형 로봇을 사용하여 다양한 환경에서 로봇간 거리와 방향각이 다른 상황에서 실험을 수행하여 제안된 자가 결합 제어 방법의 성능을 검증하였다.

복잡한 영상에 강인한 손동작 인식 방법 (Hand Gesture Recognition Algorithm Robust to Complex Image)

  • 박상윤;이응주
    • 한국멀티미디어학회논문지
    • /
    • 제13권7호
    • /
    • pp.1000-1015
    • /
    • 2010
  • 본 논문에서는 손동작 인식을 위한 새로운 방법을 제안한다. 손 추출을 위한 방법으로는 피부색과 boundary energy 정보를 이용하고 moment method로 손바닥의 중심을 구하게 된다. 손동작 인식은 두 단계로 나눌 수 있다. 첫 번째 단계는 손 형상 인식으로 병렬 신경망을 이용하였다. 손 형상의 패턴을 추출하기 위해서 fitting ellipses method를 이용하였다. fitting ellipses method는 추출된 손 영역을 12개의 타원형으로 분류하고 타원 외곽선의 흰 픽셀 비율을 계산한다. 패턴은 12개의 입력 노드로 신경망에 입력되고 4개의 출력 노드로 출력되는데 각 출력 노드는 0~1사이의 값을 갖게 된다. 손 형상은 4개의 출력 노드의 구성으로 나타낼 수 있다. 두 번째 단계는 손동작 추적과 인식이다. 손동작 추적과 인식을 위해서는 손동작의 위치 정보를 예측 할 수 있는 Kalman Filter를 이용하였다. 실험은 Windows XP상에서 수행되었고 제안한 알고리즘의 효율성을 평가하였다. 손 형상을 인식하기 위해서 300개의 이미지를 인식기에 훈련시키고 200개의 이미지를 실험에 사용하였다. 194개 이상의 이미지가 정확하게 인식 되었다. 그리고 손동작 추적 인식을 실험하기 위해서 1200번의 손동작(각 동작은 400번)을 사용하였고 그 중 1002번의 손동작이 정확하게 인식 되었다.이러한 결과는 제안된 방법이 손 영역을 추출하고 손 동작을 인식하는데 유용함을 확인 할 수 있었다.

인공지능을 활용한 도주경로 예측 및 추적 시스템 (Escape Route Prediction and Tracking System using Artificial Intelligence)

  • 양범석;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.225-227
    • /
    • 2022
  • 현재 서울특별시는 25개 구청에 7만5천여대의 CCTV가 설치되어 있다. 서울특별시 구청별로, CCTV관제를 위한 관제센터를 구축하고 24시간 인공지능 지능형 영상분석을 통해 차량 종류, 번호판인식, 색상 분류 등의 정보를 빅데이터로 구축하고 있다. 서울특별시는 국토교통부, 경찰청, 소방청, 법무부, 군부대 등과 MOU를 체결하여 긴급/응급 상황에 신속한 대응이 가능하도록 하고 있다. 즉, 각 구청의 CCTV영상을 제공하여 안전하고 재난의 예방이 가능한 스마트시티를 구축하고 있다. 본 논문에서는 CCTV영상을 인공지능을 통해 사건발생 시 차량 및 인원에 대한 특징을 추출하고 이를 기반으로 도주경로를 예측하고 지속적인 추적이 가능하도록 설계한다. 해당 경로의 CCTV영상을 인공지능이 자동으로 선택하여 표출하도록 설계한다. 해당 관할 권역 이외 지역으로 사건 관련 사람이나 차량의 도주경로가 예상될 때 인접 구청에 영상정보와 추출된 정보를 제공함으로써 스마트시티 통합플랫폼을 확장할 수 있도록 설계한다. 본 논문은 스마트시티 통합플랫폼 연구발전에 기초자료로 기여할 것이다.

  • PDF

퍼지 시스템을 이용한 골프 스윙 분류 (Golf Swing Classification Using Fuzzy System)

  • 박준욱;곽수영
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.380-392
    • /
    • 2013
  • 본 논문에서는 키넥트와 퍼지 시스템을 이용하여 골프 스윙 동작을 7가지 구간으로 분류하는 방법을 제안한다. 퍼지 논리의 입력으로 골프 클럽과 클럽의 헤드 위치를 사용하였으며 이 정보는 키넥트로부터 획득한 골퍼의 관절 정보와 컬러 영상 정보로부터 검출하였다. 제안하는 방법은 크게 신체 관절 추출 모듈, 골프 클럽 검출 및 헤드 추적 모듈, 골프 스윙 동작 분류 모듈로 구성되어 있다. 신체 관절 추출 모듈은 키넥트 센서로부터 검출되는 신체 관절 정보 중 골프 클럽의 검출을 위해 손의 좌표를 추출한다. 두 번째 모듈에서는 손의 좌표를 기준으로 허프 직선 변환 알고리즘을 사용하여 골프 클럽과 골프 클럽의 헤드를 검출한다. 마지막으로 인식 오류를 줄이고 동작별 인식 성능을 향상시키기 위해 퍼지 시스템을 적용하여 골프 스윙 동작을 분류하였다. 실시간 골프 스윙 영상에 대해 제안한 방법의 성능 평가를 시행하였고 제안한 방법은 평균 85.2%의 골프 스윙 동작 분류 신뢰도를 보여줌을 확인하였다.

형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법 (A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features)

  • 양동원
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.97-105
    • /
    • 2020
  • 열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.

적응적 매개변수 갱신을 통한 효과적인 그림자 제거 기법 (An Effective Shadow Elimination Method Using Adaptive Parameters Update)

  • 김병수;이광국;윤자영;김재준;김회율
    • 대한전자공학회논문지SP
    • /
    • 제45권3호
    • /
    • pp.11-19
    • /
    • 2008
  • 영상 내에서 이동하는 객체를 추출하는 전경 분리 방법은 객체의 일치 추적 및 인식에 있어서 필수적인 기술이다. 하지만 이동하는 객체 주변에 그림자가 발생하는 경우 이러한 전경 분리 방법에서는 그림자도 전경 영역으로 잘못 판단하여 분리하게 되어 이동 객체의 정확한 형태를 파악하거나 위치를 추정하기 어려운 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 색상 정보를 이용하여 그림자를 모델링하고 이를 통해 전경 영역 내의 그림자 화소를 Bayesian 분류법에 따라 제거하는 방법을 제안하였다. 특히 제안하는 방법은 매개변수 갱신 과정을 통해 그림자의 특성이 동적으로 모델링되기 때문에 주변 조명의 지속적인 변화에 적응적으로 대응할 수 있다. 실험 결과 제안하는 방법은 다양한 환경에서 그림자를 효과적으로 제거하는 것을 확인하였다.

영역 확장 기법과 오류 역전파 알고리즘을 이용한 자궁경부 세포진 영역 분할 및 인식 (Nucleus Segmentation and Recognition of Uterine Cervical Pop-Smears using Region Growing Technique and Backpropagation Algorithm)

  • 김광백;김성신
    • 한국정보통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.1153-1158
    • /
    • 2006
  • 자궁 경부 세포진 영상의 핵 영역 분할은 자궁 경부암 자동화 검색 시스템의 가장 어렵고도 중요한 분야로 알려져 있다. 자궁 경부 세포진 영상은 배경과 세포의 영역이 확실히 구분되지 않는 경우가 많기 때문에 이들을 확실히 구분하는 것이 매우 중요하다. 본 논문에서는 이러한 문제점을 해결하기 위해 자궁 경부 세포진 영상에서 Region growing 기법을 적용하여 세포 영상을 분할한다. Region growing 기법은 화소간의 유사도를 측정하여 영역을 확장하여 분할하는 방법이다. 세포와 배경이 분할된 영상을 일정 임계값을 이용하여 영상을 이진화 한 후, 8방향 윤곽선 추적 알고리즘을 이용해 세포 영역을 추출한다. 추출된 세포 영역을 원 영상인 RGB 컬러로 변환한 후에 K-means 알고리즘을 적용하여 각 세포 영역의 RGB 화소를 R, G, B 채널로 각각 분리하여 클러스터링 한다. 클러스터링된 각 각의 R, G, B 채널의 클러스터 값을 이용하여 HSI 모델로 변환시킨 후에 세포핵 영역의 Hue 정보를 추출한다. 추출된 세포핵의 특징을 오류 역전파 알고리즘을 적용하여 정상 세포와 비정상 세포를 분류하고 인식한다.

생체신호 기반 사용자의 긍정적인 감정에 영향을 미치는 실내디자인 특성에 관한 문헌고찰 (A Systematic Review of the Attributes of Interior Design Affecting User's Positive Emotions Measured via Bio-Signals)

  • 김시은;하미경
    • 대한건축학회논문집:계획계
    • /
    • 제36권5호
    • /
    • pp.83-91
    • /
    • 2020
  • Environmental conditions are known to impact human health and behavior, emotions such as pleasure, anxiety, and depression, and reduce stress. Interior design that elevates emotional comfort and satisfaction can help improve mental health and well-being. This study is a systematic review that analyzed previous empirical studies that explored the effect of interior design elements on the user's emotional response which is quantitatively evaluated by bio-signal and qualitatively evaluated through self-reported questionnaire surveys. This paper aims to derive the attributes of interior design and biometric indicators that affect the user's positive emotion through the synthesis of previous studies and to confirm the feasibility of measuring bio-signals as an objective evaluation tool for architectural design and as a quantitative research method. As a result of the review, the biometric data from EEG, fMRI, ECG, EMG, GSR, and eye-tracking were used to measure the participants' emotional responses, which were manifested as positive or negative depending on certain attributes of interior design such as the form, color, lighting, material and furniture. The attributes of interior design related to the positive emotional response were the curved shape, high ceiling, openness of space, and subdued tone colors. Standard lighting conditions and wooden spaces were related to stress reduction in terms of comfort and relaxation. The free arrangement of furniture was related to the user's positive emotions. On the other hand, consistent experimental protocols could not be found, and although the sample sizes of the studies were small, the studies have demonstrated the feasibility of the emotional response measurement by using the biometric data. Therefore this method can be a useful objective tool in the measurement of human-centric data in architectural design, and to develop the evidence-based design to induce positive emotions and minimize stress.

깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법 (A method of improving the quality of 3D images acquired from RGB-depth camera)

  • 박병서;김동욱;서영호
    • 한국정보통신학회논문지
    • /
    • 제25권5호
    • /
    • pp.637-644
    • /
    • 2021
  • 일반적으로, 컴퓨터 비전, 로보틱스, 증강현실 분야에서 3차원 공간 및 3차원 객체 검출 및 인식기술의 중요성이 대두되고 있다. 특히, 마이크로소프트사의 키넥트(Microsoft Kinect) 방식을 사용하는 영상 센서를 통하여 RGB 영상과 깊이 영상을 실시간 획득하는 것이 가능해짐으로 인하여 객체 검출, 추적 및 인식 연구에 많은 변화를 가져오고 있다. 본 논문에서는 다시점 카메라 시스템 상에서의 깊이 기반(RGB-Depth) 카메라를 통해 획득된 영상을 처리하여 3D 복원 영상의 품질을 향상하는 방법을 제안한다. 본 논문에서는 컬러 영상으로부터 획득한 마스크 적용을 통해 객체 바깥쪽 잡음을 제거하는 방법과 객체 안쪽의 픽셀 간 깊이 정보 차이를 구하는 필터링 연산을 결합하여 적용하는 방법을 제시하였다. 각 실험 결과를 통해 제시한 방법이 효과적으로 잡음을 제거하여 3D 복원 영상의 품질을 향상할 수 있음을 확인하였다.

필터링 기반의 잡음 제거를 통한 피부 영역의 추출 (Extraction of Skin Regions through Filtering-based Noise Removal)

  • 장석우
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.672-678
    • /
    • 2020
  • 최근 들어 초고속의 영상 촬영이 가능한 저가이며 성능이 우수한 카메라가 등장함에 따라서 물체의 미세한 움직임까지 정확하게 묘사한 초고속의 영상들이 보편화되고 있는 실정이다. 본 논문에서는 빠른 속도로 입력되는 초고속의 영상으로부터 예기치 않게 포함된 잡음을 제거한 다음, 잡음이 제거된 영상으로부터 피부 영역과 같이 개인 정보를 대표할 수 있는 관심 영역을 추출하는 방법을 제안한다. 본 논문에서는 먼저 입력받은 초고속의 영상으로부터 비정상적인 전기 신호로 인해 발생한 잡음을 양방향의 필터를 적용하여 제거한다. 그런 다음, 사전 학습을 통해 생성한 색상 분포 모델을 사용하여 영상 내에 포함된 개인 정보를 대표하는 관심 영역인 피부 영역을 정확하게 추출한다. 실험 결과에서는 본 연구에서 소개된 알고리즘이 여러 가지의 초고속 영상으로부터 잡음을 제거한 다음 관심 영역을 강인하게 추출한다는 것을 보여준다. 본 논문에서 제시된 접근 방법은 영상 전처리, 잡음 제거, 목표 영역의 추적 및 감시 등과 같은 컴퓨터 비전 및 패턴인식과 관련된 여러 가지의 응용 분야에서 유용하게 사용될 것으로 예상된다.