• Title/Summary/Keyword: Color-based tracking

Search Result 255, Processing Time 0.034 seconds

A Moving Object Tracking using Color and OpticalFlow Information (컬러 및 광류정보를 이용한 이동물체 추적)

  • Kim, Ju-Hyeon;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.112-118
    • /
    • 2014
  • This paper deals with a color-based tracking of a moving object. Firstly, existing Camshift algorithm is complemented to improve the tracking weakness in the brightness change of an image which occurs in every frame. The complemented Camshift still shows unstable tracking when the objects with same color of the tracking object exist in background. In order to overcome the drawback this paper proposes the Camshift combined with KLT algorithm based on optical flow. The KLT algorithm performing the pixel-based feature tracking can complement the shortcoming of Camshift. Experimental results show that the merged tracking method makes up for the drawback of the Camshit algorithm and also improves tracking performance.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Moving object Tracking Algorithm Based on Specific Color Detection (특정컬러정보 검출기반의 이동객체 탐색 알고리듬 구현)

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.277-280
    • /
    • 2007
  • A moving object tracking algorithm for image searching based on specific color detection is proposed in this paper. That is preprocessed for a luminance variation and noise cancellation to be robust system. The motion tracking is used the difference between input image and reference image in R, G, B each channels for a moving image. The proposed method is enhanced to 15% fast in comparison with the contour tracking method and the matching method, and stable.

  • PDF

Upper Body Tracking Using Hierarchical Sample Propagation Method and Pose Recognition (계층적 샘플 생성 방법을 이용한 상체 추적과 포즈 인식)

  • Cho, Sang-Hyun;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.63-71
    • /
    • 2008
  • In this paper, we propose a color based hierarchically propagated particle filter that extends the color based particle filter into the articulated upper body tracking. Since color feature is robust to partial occlusion and rotation, the color based particle filter is widely used for object tracking. However, in articulated body tacking, it is not desirable to use the traditional particle filter because the dimension of the state vector usually is high and thus, many samples are required for robust hacking. To overcome this problem, we use a hierarchical tracking method for each body part based on the blown body part. By using a hierarchical tracking method, we can reduce the number of samples for robust tracking in the cluttered environment. Also for human pose recognition, we classify the human pose into eight categories using Support Vector Machine(SVM) according to the angle between upper- arm and fore-arm. Experimental results show that our proposed method is more efficient than the traditional particle filter.

Vehicle Tracking using Sequential Monte Carlo Filter (순차적인 몬테카를로 필터를 사용한 차량 추적)

  • Lee, Won-Ju;Yun, Chang-Yong;Kim, Eun-Tae;Park, Min-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.434-436
    • /
    • 2006
  • In a visual driver-assistance system, separating moving objects from fixed objects are an important problem to maintain multiple hypothesis for the state. Color and edge-based tracker can often be "distracted" causing them to track the wrong object. Many researchers have dealt with this problem by using multiple features, as it is unlikely that all will be distracted at the same time. In this paper, we improve the accuracy and robustness of real-time tracking by combining a color histogram feature with a brightness of Optical Flow-based feature under a Sequential Monte Carlo framework. And it is also excepted from Tracking as time goes on, reducing density by Adaptive Particles Number in case of the fixed object. This new framework makes two main contributions. The one is about the prediction framework which separating moving objects from fixed objects and the other is about measurement framework to get a information from the visual data under a partial occlusion.

  • PDF

A study on Object Tracking using Color-based Particle Filter

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.743-744
    • /
    • 2016
  • Object tracking in video sequences is a challenging task and has various applications. Particle filtering has been proven very successful for non-Gaussian and non-linear estimation problems. In this study, we first try to develop a color-based particle filter. In this approach, the color distributions of video frames are integrated into particle filtering. Color distributions are applied because of their robustness and computational efficiency. The model of the particle filter is defined by the color information of the tracked object. The model is compared with the current hypotheses of the particle filter using the Bhattacharyya coefficient. The proposed tracking method directly incorporates the scale and motion changes of the objects. Experimental results have been presented to show the effectiveness of our proposed system.

Multi-pedestrian tracking using deep learning technique and tracklet assignment

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.808-810
    • /
    • 2018
  • Pedestrian tracking is a particular problem of object tracking, and an important component in various vision-based applications, such as autonomous cars or surveillance systems. After several years of development, pedestrian tracking in videos is still a challenging problem because of various visual properties of objects and surrounding environment. In this research, we propose a tracking-by-detection system for pedestrian tracking, which incorporates Convolutional Neural Network (CNN) and color information. Pedestrians in video frames are localized by a CNN, then detected pedestrians are assigned to their corresponding tracklets based on similarities in color distributions. The experimental results show that our system was able to overcome various difficulties to produce highly accurate tracking results.

Multiple Face Tracking System Using the Kalman Estimator Based on the Color SSD Algorithm (컬러 SSD 알고리즘 기반 칼만 예측기를 이용한 다수의 얼굴 검출 및 추적 시스템)

  • Kim, Byoung-Ki;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.347-350
    • /
    • 2005
  • This paper proposes a new tracking algorithm using the Kalman estimator based color SSD algorithm. The Kalman estimator includes the color information as well as the position and size of the face region in its state vector, to take care of the variation of skin color while faces are moving. Based on the estimated face position, the color SSD algorithm finds the face matching with the one in the previous frame even when the color and size of the face region vary. The features of a face region extracted by the color SSD algorithm are used to update the state of the Kalman estimator.

  • PDF

Robust Object Tracking in Mobile Robots using Object Features and On-line Learning based Particle Filter (물체 특징과 실시간 학습 기반의 파티클 필터를 이용한 이동 로봇에서의 강인한 물체 추적)

  • Lee, Hyung-Ho;Cui, Xuenan;Kim, Hyoung-Rae;Ma, Seong-Wan;Lee, Jae-Hong;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.562-570
    • /
    • 2012
  • This paper proposes a robust object tracking algorithm using object features and on-line learning based particle filter for mobile robots. Mobile robots with a side-view camera have problems as camera jitter, illumination change, object shape variation and occlusion in variety environments. In order to overcome these problems, color histogram and HOG descriptor are fused for efficient representation of an object. Particle filter is used for robust object tracking with on-line learning method IPCA in non-linear environment. The validity of the proposed algorithm is revealed via experiments with DBs acquired in variety environment. The experiments show that the accuracy performance of particle filter using combined color and shape information associated with online learning (92.4 %) is more robust than that of particle filter using only color information (71.1 %) or particle filter using shape and color information without on-line learning (90.3 %).

Hand Region Segmentation and Tracking Based on Hue Image (Hue 영상을 기반한 손 영역 검출 및 추적)

  • 권화중;이준호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1003-1006
    • /
    • 1999
  • Hand segmentation and tracking is essential to the development of a hand gesture recognition system. This research features segementation and tracking of hand regions based the hue component of color. We propose a method that employs HSI color model, and segments and tracks hand regions using the hue component of color alone. In order to track the segmented hand regions, we only apply Kalman filter to a region of interest represented by a rectangle region. Initial experimental results show that the system accurately segments and tracks hand regions although it only uses the hue compoent of color. The system yields near real time throghput of 8 frames per second on a Pentium II 233MHz PC.

  • PDF