• Title/Summary/Keyword: Color-based Vision System

Search Result 168, Processing Time 0.026 seconds

Visual Saliency Detection Based on color Frequency Features under Bayesian framework

  • Ayoub, Naeem;Gao, Zhenguo;Chen, Danjie;Tobji, Rachida;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.676-692
    • /
    • 2018
  • Saliency detection in neurobiology is a vehement research during the last few years, several cognitive and interactive systems are designed to simulate saliency model (an attentional mechanism, which focuses on the worthiest part in the image). In this paper, a bottom up saliency detection model is proposed by taking into account the color and luminance frequency features of RGB, CIE $L^*a^*b^*$ color space of the image. We employ low-level features of image and apply band pass filter to estimate and highlight salient region. We compute the likelihood probability by applying Bayesian framework at pixels. Experiments on two publically available datasets (MSRA and SED2) show that our saliency model performs better as compared to the ten state of the art algorithms by achieving higher precision, better recall and F-Measure.

Design of Computer Vision Interface by Recognizing Hand Motion (손동작 인식에 의한 컴퓨터 비전 인터페이스 설계)

  • Yun, Jin-Hyun;Lee, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • As various interfacing devices for computational machines are being developed, a new HCI method using hand motion input is introduced. This interface method is a vision-based approach using a single camera for detecting and tracking hand movements. In the previous researches, only a skin color is used for detecting and tracking hand location. However, in our design, skin color and shape information are collectively considered. Consequently, detection ability of a hand increased. we proposed primary orientation edge descriptor for getting an edge information. This method uses only one hand model. Therefore, we do not need training processing time. This system consists of a detecting part and a tracking part for efficient processing. In tracking part, the system is quite robust on the orientation of the hand. The system is applied to recognize a hand written number in script style using DNAC algorithm. Performance of the proposed algorithm reaches 82% recognition ratio in detecting hand region and 90% in recognizing a written number in script style.

A Study on the Application of Spatial-Knowledge-Tags using Human Motion in Intelligent Space

  • Jin, Tae-Seok;Morioka, Kazuyuki;Niitsuma, Mihoko;Sasaki, Takeshi;Hashimoto, Hideki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.31-36
    • /
    • 2005
  • Intelligent Space (iSpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment comes to have intelligence. In iSpace, the locations of multiple humans and other objects are obtained and tracked by using multiple camera and color-based method. In addition, we describe a context-aware information system which is based on Spatial-Knowledge-Tags (SKT). SKT system enables humans to access information and data by using spatial location of human and stored information in storage. The proposed tracking method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Human Face Identification using KL Transform and Neural Networks (KL 변환과 신경망을 이용한 개인 얼굴 식별)

  • Kim, Yong-Joo;Ji, Seung-Hwan;Yoo, Jae-Hyung;Kim, Jung-Hwan;Park, Mignon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • Machine recognition of faces from still and video images is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. In addition, human face identification has numerous applications such as human interface based systems and real-time video systems of surveillance and security. In this paper, we propose an algorithm that can identify a particular individual face. We consider human face identification system in color space, which hasn't often considered in conventional in conventional methods. In order to make the algorithm insensitive to luminance, we convert the conventional RGB coordinates into normalized CIE coordinates. The normalized-CIE-based facial images are KL-transformed. The transformed data are used as the input of multi-layered neural network and the network are trained using error-backpropagation methods. Finally, we verify the system performance of the proposed algorithm by experiments.

  • PDF

Traffic Sign Recognition by the Variant-Compensation and Circular Tracing (변형 보정과 원형 추적법에 의한 교통 표지판 인식)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • We propose the new method for the traffic signs recognition that is one of the DAS(Driving assistance system) in the intelligent vehicle. Our approach estimates a varied degree by using a geometric method from the varied traffic signs in noise, rotation and size, and extracts the recognition symbol from the compensated traffic sign for a recognition by using the sequential color-based clustering. This proposed clustering method classify the traffic sign into the attention, regulation, indication, and auxiliary class. Also, The circular tracing method is used for the final traffic sign recognition. To evaluate the effectiveness of the proposed method, varied traffic signs were built. As a result, The proposed method show that the 95 % recognition rate for a single variation, and 93 % recognition rate for a mixed variation.

  • PDF

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

Plant Species Identification based on Plant Leaf Using Computer Vision and Machine Learning Techniques

  • Kaur, Surleen;Kaur, Prabhpreet
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • Plants are very crucial for life on Earth. There is a wide variety of plant species available, and the number is increasing every year. Species knowledge is a necessity of various groups of society like foresters, farmers, environmentalists, educators for different work areas. This makes species identification an interdisciplinary interest. This, however, requires expert knowledge and becomes a tedious and challenging task for the non-experts who have very little or no knowledge of the typical botanical terms. However, the advancements in the fields of machine learning and computer vision can help make this task comparatively easier. There is still not a system so developed that can identify all the plant species, but some efforts have been made. In this study, we also have made such an attempt. Plant identification usually involves four steps, i.e. image acquisition, pre-processing, feature extraction, and classification. In this study, images from Swedish leaf dataset have been used, which contains 1,125 images of 15 different species. This is followed by pre-processing using Gaussian filtering mechanism and then texture and color features have been extracted. Finally, classification has been done using Multiclass-support vector machine, which achieved accuracy of nearly 93.26%, which we aim to enhance further.

Sensitivity Lighting System Based on multimodal (멀티모달 기반의 감성 조명 시스템)

  • Kwon, Sun-Min;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.721-729
    • /
    • 2012
  • In this paper, human sensibility is measured on multi-modal environment and a sensitivity lighting system is implemented according to driven emotional indexes. We use LED lighting because it supports ecological circumstance, high efficiency, and long lifetime. In particular, the LED lighting provides various color schemes even in single lighting bulb. To cognize the human sensibility, we use the image information and the arousal state information, which are composed of multi-modal basis and calculates emotional indexes. In experiments, as the LED lighting color vision varies according to users' emotional index, we show that it provides human friendly lighting system compared to the existing systems.

A Study on Automatic Detection of Speed Bump by using Mathematical Morphology Image Filters while Driving (수학적 형태학 처리를 통한 주행 중 과속 방지턱 자동 탐지 방안)

  • Joo, Yong Jin;Hahm, Chang Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.55-62
    • /
    • 2013
  • This paper aims to detect Speed Bump by using Omni-directional Camera and to suggest Real-time update scheme of Speed Bump through Vision Based Approach. In order to detect Speed Bump from sequence of camera images, noise should be removed as well as spot estimated as shape and pattern for speed bump should be detected first. Now that speed bump has a regular form of white and yellow area, we extracted speed bump on the road by applying erosion and dilation morphological operations and by using the HSV color model. By collecting huge panoramic images from the camera, we are able to detect the target object and to calculate the distance through GPS log data. Last but not least, we evaluated accuracy of obtained result and detection algorithm by implementing SLAMS (Simultaneous Localization and Mapping system).

Banner Control Automation System Using YOLO and OpenCV (YOLO와 OpenCV기술을 활용한 현수막 단속 자동화 시스템 방안)

  • Dukwoen Kim;Jihoon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.48-52
    • /
    • 2023
  • From the past to the present, banners are consistently used as effective advertising means. In the case of Korea, there are frequent situations in which hidden advertisements are installed. As a result, such hidden advertisement materials may damage urban aesthetics and moreover, incur unnecessary manpower consumption and waste of money. The proposed method classifies the detected banners into good banner and bad banner. The classification results are based on whether the relevant banners are installed in compliance with legal guidelines. In the process, YOLO and Open Computer Vision library are used to determine from various perspectives whether banners in CCTV images comply with the guidelines. YOLO is used to detect the banner area in CCTV images, and OpenCV is used to detect the color values in the area for color comparison. If a banner is detected in the video, the proposed method calculates the location of the banner and the distance from the designated bulletin to determine whether it was installed within the designated location, and then compares whether the color used in the banner is complied with local government guidelines.

  • PDF