• Title/Summary/Keyword: Color pixels

Search Result 381, Processing Time 0.024 seconds

Location-Based Saliency Maps from a Fully Connected Layer using Multi-Shapes

  • Kim, Hoseung;Han, Seong-Soo;Jeong, Chang-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.166-179
    • /
    • 2021
  • Recently, with the development of technology, computer vision research based on the human visual system has been actively conducted. Saliency maps have been used to highlight areas that are visually interesting within the image, but they can suffer from low performance due to external factors, such as an indistinct background or light source. In this study, existing color, brightness, and contrast feature maps are subjected to multiple shape and orientation filters and then connected to a fully connected layer to determine pixel intensities within the image based on location-based weights. The proposed method demonstrates better performance in separating the background from the area of interest in terms of color and brightness in the presence of external elements and noise. Location-based weight normalization is also effective in removing pixels with high intensity that are outside of the image or in non-interest regions. Our proposed method also demonstrates that multi-filter normalization can be processed faster using parallel processing.

An Automatic Object Extraction Method Using Color Features Of Object And Background In Image (영상에서 객체와 배경의 색상 특징을 이용한 자동 객체 추출 기법)

  • Lee, Sung Kap;Park, Young Soo;Lee, Gang Seong;Lee, Jong Yong;Lee, Sang Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.459-465
    • /
    • 2013
  • This paper is a study on an object extraction method which using color features of an object and background in the image. A human recognizes an object through the color difference of object and background in the image. So we must to emphasize the color's difference that apply to extraction result in this image. Therefore, we have converted to HSV color images which similar to human visual system from original RGB images, and have created two each other images that applied Median Filter and we merged two Median filtered images. And we have applied the Mean Shift algorithm which a data clustering method for clustering color features. Finally, we have normalized 3 image channels to 1 image channel for binarization process. And we have created object map through the binarization which using average value of whole pixels as a threshold. Then, have extracted major object from original image use that object map.

Model-Based Color- Image Halftoning Algorithm Using Dot-Pattern Database (도트 패턴 데이터 베이스를 이용한 모델 기반 칼라 영상 중간조 알고리즘)

  • Kim, Kyeong-Man;Song, Kun-Woen;Min, Gak;Kim, Jeong-Yeop;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.208-217
    • /
    • 2001
  • Model-based color image halftoning method using dot-pattern database is proposed for low-resolution color image printing. Dot-pattern database used in the proposed method is based on Blue-Noise Mask. The database consists of dot-patterns constructed by circular dot-overlap model according to each color value. In halftoning procedure, input color value is reproduced as the dot-pattern selected to minimize the difference between the color values of the original image and those of the printed image. Also, the contrast sensitivity function as a human visual model is used to improve the perceived quality of the printed image in dot-pattern selection. Thus, the proposed method can substantially reproduce the color values of the pixels in original image and obtain better image quality. In the experiment, the proposed method has less ΔΕ/Sub ab/ between the original image in monitor and the printed one than that of ED and BNM halftoning. This result approves that the proposed method reproduces better image quality.

  • PDF

Depth Image Upsampling Algorithm Using Selective Weight (선택적 가중치를 이용한 깊이 영상 업샘플링 알고리즘)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1371-1378
    • /
    • 2017
  • In this paper, we present an upsampling technique for depth map image using selective bilateral weights and a color weight using laplacian function. These techniques prevent color texture copy problem, which problem appears in existing upsamplers uses bilateral weight. First, we construct a high-resolution image using the bicubic interpolation technique. Next, we detect a color texture region using pixel value differences of depth and color image. If an interpolated pixel belongs to the color texture edge region, we calculate weighting values of spatial and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Otherwise we use color weight instead of depth weight. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Image Retrieval Using the Color Co-occurrence Histogram Describing the Size and Coherence of the Homogeneous Color Region (칼라 영역의 크기와 뭉침을 기술하는 칼라 동시발생 히스토그램을 이용한 영상검색)

  • An Myung-Seok;Cho Seok-Je
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.275-282
    • /
    • 2006
  • For the efficient image retrieval, the method has studied that uses color distribution and relations between pixels. This paper presents the color descriptor that stands high above the others in image retrieval capacity. It is based on color co-occurrence histogram that the diagonal part and the non-diagonal part are attached the weight and modified to energy of color co-occurrence histogram, and the number of bins with petty worth have little influence is curtailed. It's verified by analysis that the diagonal part carries size information of homogeneous color region and the non-diagonal part does information about the coherence of it, Moreover the non-diagonal part is more influential than diagonal part in survey of similarity between images. So, the non-diagonal part is attached more weight than the diagonal part as a result of the research. The experiments validate that the proposed descriptor shows better image retrieval performance when the weight for non-diagonal part is set to the value between 0.7 and 0.9.

Human Skin Region Detection Utilizing Depth Information (깊이 정보를 활용한 사람의 피부영역 검출)

  • Jang, Seok-Woo;Park, Young-Jae;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.6
    • /
    • pp.29-36
    • /
    • 2012
  • In this paper, we suggest a new method of detecting human skin-color regions from three-dimensional static or dynamic stereoscopic images by effectively integrating depth and color features. The suggested method first extracts depth information that represents the distance between a camera and an object from input left and right stereoscopic images through a stereo matching technique. It then performs labeling for pixels with similar depth features and determines the labeled regions having human skin color as actual skin color regions. Our experimental results show that the suggested skin region extraction method outperforms existing skin detection methods in terms of skin-color region extraction accuracy.

Extraction of a Central Object in a Color Image Based on Significant Colors (특이 칼라에 기반한 칼라 영상에서의 중심 객체 추출)

  • SungYoung Kim;Eunkyung Lim;MinHwan Kim
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.648-657
    • /
    • 2004
  • A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.

  • PDF

Object-based Image Classification by Integrating Multiple Classes in Hue Channel Images (Hue 채널 영상의 다중 클래스 결합을 이용한 객체 기반 영상 분류)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2011-2025
    • /
    • 2021
  • In high-resolution satellite image classification, when the color values of pixels belonging to one class are different, such as buildings with various colors, it is difficult to determine the color information representing the class. In this paper, to solve the problem of determining the representative color information of a class, we propose a method to divide the color channel of HSV (Hue Saturation Value) and perform object-based classification. To this end, after transforming the input image of the RGB color space into the components of the HSV color space, the Hue component is divided into subchannels at regular intervals. The minimum distance-based image classification is performed for each hue subchannel, and the classification result is combined with the image segmentation result. As a result of applying the proposed method to KOMPSAT-3A imagery, the overall accuracy was 84.97% and the kappa coefficient was 77.56%, and the classification accuracy was improved by more than 10% compared to a commercial software.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Skinny Smudge Blending Method Using Arbitrary-shaped Master (임의 형상 마스터를 이용한 스키니 스머지 블렌딩 방법)

  • Kwak, Noyoon
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.333-338
    • /
    • 2012
  • This paper is related to a skinny smudge blending method using the arbitrary-shaped master adhered closely to the contour shape. The smudge tool is the popular graphic tool embedded in Adobe Photoshop CS6. The smudge tool is used to smear paint on your canvas. The effect is much like finger painting. We can use the smudge tool by selecting its icon on the toolbox of Adobe Photoshop CS6 and dragging in the direction you want to smudge while holding the mouse button down on the image. As the smudge tool blends all the pixels within a radius of the master to generate the result image, its disadvantages are to smudge even the pixels in the undesired region. In this paper to reduce the disadvantage, the skinny smudge blending method using arbitrary-shaped master is proposed. The proposed blending method has the advantage of applying the smudge effect to the desired regions regardless of the background as the arbitrary-shaped master adhered closely to the contour shape is extracted by color image segmentation.