• 제목/요약/키워드: Color image multi-level thresholding

검색결과 3건 처리시간 0.019초

Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding (Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image)

  • 오준택;곽현욱;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 weighted FCM(Fuzzy C-Means) 알고리즘을 적용한 컬러 영상 multi-level thresholding을 제안한다. FCM 알고리즘은 기존의 thresholding 방법들과 달리 최적의 임계치를 결정할 수 있으며 multi-level thresholding으로의 확장이 가능하다. 그러나 공간정보를 포함하고 있지 않기 때문에 잡음 등에 민감하다는 단점을 가진다. 본 논문은 이러한 단점을 해결하기 위해서 이웃 화소들로부터 얻은 entropy 기반의 가중치(weight)를 FCM 알고리즘에 적용함으로써 잡음의 제거가 가능하다. 그리고 각 색상별 성분의 군집 화소들을 기반으로 생성한 코드 영상에 대해서 군집 내부의 거리값을 이용하여 최적의 군집수를 결정한다. 실험에서 제안한 방법이 기존의 방법들보다 잡음에 대해서 강건하며 우수한 분할 성능을 보였다.

영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할 (Region-based Multi-level Thresholding for Color Image Segmentation)

  • 오준택;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제43권6호
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding은 영상 분할 방법 중 하나로 널리 이용되고 있지만 대부분의 기존 논문들은 응용 분야에 직접적으로 이용되기에는 적합하지 않거나 영상 분할 단계까지 확장되지 않고 있다. 본 논문에서는 영상 분할을 위한 multi-level thresholding 방안으로써 영역 단위의 multi-level thresholding을 제안한다. 먼저, 영상의 색상별 성분에 대해서 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘을 적용하여 2개의 군집으로 분류한 후 코드 영상을 생성한다. EWFCM 알고리즘은 화소들에 대한 공간 정보를 추가한 개선된 FCM 알고리즘으로 영상 내 존재하는 잡음을 제거한다. 그리고 코드 영상에 존재하는 군집의 수를 감소함으로써 좀 더 나은 영상 분할 결과를 얻을 수 있으며 군집의 감소는 하나의 군집내에 존재하는 영역들과 나머지 군집들간의 유사도를 기반으로 영역을 재분류함으로써 처리된다. 그러나 영상에는 여전히 많은 영역들이 존재하기 때문에 이를 해결하기 위한 하나의 후처리 방안으로써 영역간의 Kullback-Leibler 거리값을 기반으로 Bayesian 알고리즘에 의한 영역 합병을 수행한다. 실험 결과 제안한 영역 기반의 multi-level thresholding은 기존 방법이나 화소나 군집 기반의 multi-level thresholding보다 좋은 분할 결과를 보였으며 Bayesian 알고리즘을 이용한 후처리 방안에 의해 좀 더 나은 결과를 보였다.

색상지수 기반의 식물분할을 위한 다층퍼셉트론 신경망 (A Multi-Layer Perceptron for Color Index based Vegetation Segmentation)

  • 이문규
    • 산업경영시스템학회지
    • /
    • 제43권1호
    • /
    • pp.16-25
    • /
    • 2020
  • Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.