• Title/Summary/Keyword: Color face

Search Result 709, Processing Time 0.028 seconds

Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction (인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정)

  • Park Sung-Kee;Park Mignon;Lee Taigun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.

A Face Detection using Pupil-Template from Color Base Image (컬러 기반 영상에서 눈동자 템플릿을 이용한 얼굴영상 추출)

  • Choi, Ji-Young;Kim, Mi-Kyung;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.828-831
    • /
    • 2005
  • In this paper we propose a method to detect human faces from color image using pupil-template matching. Face detection is done by three stages. (i)separating skin regions from non-skin regions; (ii)generating a face regions by application of the best-fit ellipse; (iii)detecting face by pupil-template. Detecting skin regions is based on a skin color model. we generate a gray scale image from original image by the skin model. The gray scale image is segmented to separated skin regions from non-skin regions. Face region is generated by application of the best-fit ellipse is computed on the base of moments. Generated face regions are matched by pupil-template. And we detection face.

  • PDF

Color Simulation to Demonstrate the Effects of the Filter Layer with $CoAl_2O_4$ on Inner Face of CRT Panel

  • Kim, Sang-Mun
    • Journal of Information Display
    • /
    • v.6 no.3
    • /
    • pp.26-29
    • /
    • 2005
  • Nanosize cobalt aluminate($CoAl_2O_4$) power was coated as filter layer for us to improve the color purity and contrast performances on the inner face of CRT panel. We simulated color properties by measuring the transmittance and thickness of the coated filter layer. Contrast performance could be improved and color gamut was also changed by the selective light absorption of filter layer at 580${\sim}$605 nm.

Face Detection Algorithm Using Pulse-Coupled Neural Network (Pulse-Coupled Neural Network를 이용한 얼굴추출 알고리즘)

  • Lim, Young-Wan;Na, Jin-Hee;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.105-107
    • /
    • 2004
  • In this work, we suggested the method which improves the efficiency of the face detection algorithm using Pulse-Coupled Neural Network. Face detection algorithm which uses the color information is independent on size, angle, and obstruction of a face. But the use of color information encounters some problems arising from skin-tone color in the background, intensity variation within faces, and presence of random noise, and so on. Depending on these conditions, we obtained the mean and variance of skin-tone colors by experiments. Then we introduce a preprocess that the pixel with a mean value of skin-tone colors has highest level value(255) and the other pixels in the skin-tone region have values between 0 and 255 according to a normal distribution with a variance. This preprocess leads to an easy decision of the linking parameters.

  • PDF

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

The Influence of Hemosialysis to the Face Color of Patients in End Stage Renal Disease (말기신부전 환자의 혈액투석 치료가 안면 색에 미치는 영향)

  • Lee, Se-Hwan;Cho, Dong-Uk
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.437-444
    • /
    • 2010
  • In this paper, we propose a method of analysing the relation between the patient's face color and his(her) kidney disease using image processing technology. This method is based on the ocular inspection which is one of the most famous diagnosis methods used in the oriental medical system. The way of processing and analysing the face image, which is for visualization and objectification of the color difference, is included. The objects are selected from the patients who suffer the kidney disease and use the hemodialyzer. Their facial images and clinical data are collected. From these data, we propose a hypothesis that the color of the patient's face is changed according to the patient's kidney state. At the same time, we present two algorithms of extracting the specific part of face which can identify the state of the patient's kidney and tracing the history of the color's change. This proposed method is evaluated through the practical experiments and their analysis.

A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance (컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법)

  • 지은미;윤호섭;이상호
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.809-817
    • /
    • 2002
  • This paper describes a new face detection method that is a pre-processing algorithm for on-line face recognition. To complement the weakness of using only edge or rotor features from previous face detection method, we propose the two types of face detection method. The one is a combined method with edge and color features and the other is a center area color sampling method. To prevent connecting the people's face area and the background area, which have same colors, we propose a new adaptive edge detection algorithm firstly. The adaptive edge detection algorithm is robust to illumination variance so that it extracts lots of edges and breakouts edges steadily in border between background and face areas. Because of strong edge detection, face area appears one or multi regions. We can merge these isolated regions using color information and get the final face area as a MBR (Minimum Bounding Rectangle) form. If the size of final face area is under or upper threshold, color sampling method in center area from input image is used to detect new face area. To evaluate the proposed method, we have experimented with 2,100 face images. A high face detection rate of 96.3% has been obtained.

A Technique of Feature Vector Generation for Eye Region Using Embedded Information of Various Color Spaces (다양한 색공간 정보를 이용한 눈 영역의 특징벡터 생성 기법)

  • Park, Jung-Hwan;Shin, Pan-Seop;Kim, Guk-Boh;Jung, Jong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.82-89
    • /
    • 2015
  • The researches of image recognition have been processed traditionally. Especially, face recognition technology has been received attractions with advance and applied to various areas according as camera sensor embedded into many devices such as smart phone. In this study, we design and develop a feature vector generation technique of face for making animation caricatures using methods for face detection which are previous stage of face recognition. At first, we detect both face region and detailed eye region of component element by Viola&Johns's realtime detection method which are called as ROI(Region Of Interest). And then, we generate feature vectors of eye region by utilizing factors as opposed to the periphery and by using appearance information of eye. At this point, we focus on the embedded information in many color spaces to overcome the problems which can be occurred by using one color space. We propose a feature vector generation method using information from many color spaces. Finally, we experiment the test of feature vector generation by the proposed method with enough quantity of sample picture data and evaluate the proposed method for factors of estimating performance such as error rate, accuracy and generation time.

Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features (Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식)

  • Go Gi-Young;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.

  • PDF

Emotion Recognition by Vision System (비젼에 의한 감성인식)

  • 이상윤;오재흥;주영훈;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.203-207
    • /
    • 2001
  • In this Paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using CCD color image. To do this, we first acquire the color image from the CCD camera, and then propose the method for recognizing the expression to be represented the structural correlation of man's feature Points(eyebrows, eye, nose, mouse) It is central technology that the Process of extract, separate and recognize correct data in the image. for representation is expressed by structural corelation of human's feature Points In the Proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Had separated complexion area using color-difference of color space by method that have separated background and human's face toughly to change such as external illumination in this paper. For this, we propose an algorithm to extract four feature Points from the face image acquired by the color CCD camera and find normalization face picture and some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector. Finally, we show the Practical application possibility of the proposed method.

  • PDF