• Title/Summary/Keyword: Color and fluorescence

Search Result 170, Processing Time 0.028 seconds

Rhodamine Based Fluorescent Chemosensors for Hg2+ and its Biological Application

  • Choi, Ji-Young;Kim, Wan-Tae;Yoon, Ju-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2359-2364
    • /
    • 2012
  • Two new chemosensors, rhodamine 6G derivative bearing hydroxyethyl group (1) and rhodamine base derivative bearing 15-crown-5 group (2) were synthesized and their sensing behaviors toward various metal ions were investigated by UV/Vis and fluorescence spectroscopies. Addition of $Hg^{2+}$ ion to a $CH_3CN$ solution of 1 and 2 gave visual color changes as well as fluorescent OFF-ON observations. Selectivity and sensitivity of 1 towards $Hg^{2+}$ are excellent enough to detect micromolar level of $Hg^{2+}$ ion, even in equeous media and biological sample (HeLa cell).

The Novel Functional Chromophores Based on Squarylium Dyes

  • Park, Soo-Youl;Jun, Kun;Oh, Sea-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.428-432
    • /
    • 2005
  • Squarylium or squaraine dyes are derived from 1,2-dihydroxycyclobuten-3,4-dione, otherwise known as squaric acids. They are two principal types: the 1,2-bisdonorsubstituted derivatives, and the 1,3-bisdonorsubstituted derivatives. The former are essentially merocyanines and have no distinctive properties, whereas the latter represent a unique type of chromophore, which is neither a merocyanines nor cyanine and has exceptional light absorption characteristics. They also have many functional applications based on their special properties. Thus it was the objective of this research project to synthesize a range of 1,3-squarylium dyes of widely differing structural types, and to investigate their light absorption and fluorescence properties in general, and the color change properties of appropriate examples in particular. Also in this study, the various pHinduced colour change processes were examined.

Synthesis and Photoluminescent Property of Diheteryl-substituted Triphenylamine Compound (Diheteryl-substituted triphenylamine 화합물의 합성과 형광 특성)

  • Kim, Byung-Soon;Kim, Sung-Hoon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.6
    • /
    • pp.35-38
    • /
    • 2007
  • FTriphenylamine dye compound having diheteryl moiety was synthesized and its photoluminescent property was investigated. Organic luminescent materials have received great attentions due to potential application subjects onto full color image displays. In this context, the dye (III) for light emitting materials was synthesized using 2-(4-amino-2-hydroxyphenyl)benzoxazole (I) and 4,4'-diformyltriphenylamine (II). It is well known that the amino groups of compound (I) react with carbonyl groups, especially an aldehyde, to afford azomethine linkages. The dye shows bulish-green fluorescence property, which is anticipated for the light-emitting material for display devices. In this context, our aim is to synthesize diheteryl-substituted triphenylamine fluorescent dye as an emitting material. The spectroscopic characteristics and the fluorescent properties of this dye molecule were examined and determined.

Spectral Properties of a pH Responsive Water Soluble Spironaphthoxazine and Its Multi-Switching Property

  • Bae, Jin-Seok;Kim, Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • A water soluble spironaphthoxazine (SPO) was synthesized, and its spectral properties were determined. Under UV irradiation, colorless SPO shows intensive blue color while the intensity of its initial fluorescence decreased. In addition, SPO also exhibited high sensitivity to pH stimuli both in colorimetry and fluorometry distinguishing from the spectral appearance observed under UV irradiation. Further, integrating these two optical characteristics a three-state switching system can be established, and all interconversions can be observed by naked-eye.

Electrical and Optical Properties of Organic Light Emission Devices using Selective Doping in a Single Host (단일 호스트를 이용하여 선택적으로 도핑된 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.124-127
    • /
    • 2010
  • We have fabricated organic white light emitting device by two colors from yellow fluorescence material (5,6,11,12)-Tetraphenylnaphthacene(Rubrene) and blue phosphorescent material (iridum-bis(4,6-difluorophenylpyridinato-N,C2)-picolinate(FIrpic). The threshold voltage is 5.3 V, and the brightness reaches 1000 cd/$m^2$ at 11 V, 14.5 mA/$m^2$. The color of the light corresponds to a CIE coordinate of (0.30, 0.38). The highest efficiency of the device can reach 9.5 cd/A or 5.5 lm/W at 6 V, 0.1 mA/$m^2$.

Fabrication of White Organic light Emission Device Using Selective Doping in a Single Host (단일 호스트를 이용하여 선택적으로 도핑된 백색 OLED 제작)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.74-75
    • /
    • 2009
  • White light emitting device based on a red fluorescence material (5,6,11,12)-Tetraphenylnaphthacene(Rubrene) has been fabricated. The white OLED consists of it and a blue phosphorescent material FIrPic (iridum-bis(4,6,-difluorophenylpyridinato-N,C2)-picolinate) The threshold voltage is 5.3V, and the brightness reaches $1000\;cd/m^2$ at 11V, $14.5\;mA/cm^2$. The color of the light corresponds to a CIE coordinate of (0.30, 0.38). The highest efficiency of the device can reach 9.5 cd/A or 5.5 1m/W at 6V, $0.1mA/cm^2$.

  • PDF

New green fluorescent materials for OLEDs

  • Lee, Chil-Won;Lee, Eun-Jung;Kim, Joon-Woo;Yun, Jong-Hyeok;Lee, Jun-Yeob;Gong, Myoung-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.628-631
    • /
    • 2007
  • We developed new green emitting materials based on the spiro moieties. The introduction of a spiro linkage into the structure of DJGH series lead to a reduction in crystallization tendency and an increase in glass transition temperature. they showed much better emitting efficiency and color purity than commercial host material $Alq_3$.

  • PDF

Sensing Technology for Rapid Detection of Phosphorus in Water: A Review

  • Islam, Sumaiya;Reza, Md Nasim;Jeong, Jin-Tae;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.138-144
    • /
    • 2016
  • Purpose: Phosphorus is an essential element for water quality control. Excessive amounts of phosphorus causes algal bloom in water, which leads to eutrophication and a decline in water quality. It is necessary to maintain the optimum amount of phosphorus present. During the last decades, various studies have been conducted to determine phosphorus content in water. In this study, we present a comprehensive overview of colorimetric, electrochemical, fluorescence, microfluidic, and remote sensing technologies for the measurement of phosphorus in water, along with their working principles and limitations. Results: The colorimetric techniques determine the concentration of phosphorus through the use of color-generating reagents. This is specific to a single chemical species and inexpensive to use. The electrochemical techniques operate by using a reaction of the analyte of interest to generate an electrical signal that is proportional to the sample analyte concentration. They show a good linear output, good repeatability, and a high detection capacity. The fluorescence technique is a kind of spectroscopic analysis method. The particles in the sample are excited by irradiation at a specific wavelength, emitting radiation of a different wavelength. It is possible to use this for quantitative and qualitative analysis of the target analyte. The microfluidic techniques incorporate several features to control chemical reactions in a micro device of low sample volume and reagent consumption. They are cheap and rapid methods for the detection of phosphorus in water. The remote sensing technique analyzes the sample for the target analyte using an optical technique, but without direct contact. It can cover a wider area than the other techniques mentioned in this review. Conclusion: It is concluded that the sensing technologies reviewed in this study are promising for rapid detection of phosphorus in water. The measurement range and sensitivity of the sensors have been greatly improved recently.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Cytogenetic Mapping of Carthamus tinctorius L. with Tandemly Repeated DNA Sequences by Fluorescence in situ Hybridization

  • Mancia, Franklin Hinosa;Ju, Yoon Ha;Lim, Ki-Byung;Kim, Jung Sun;Nam, Sang Yong;Hwang, Yoon-Jung
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.654-661
    • /
    • 2017
  • Dual-color fluorescence in situ hybridization karyotype analysis was created using repetitive sequences including two types of rDNA repeats (45S and 5S rDNAs) and Arabidopsis-type telomere sequence repeats. The somatic metaphase cells of Carthamus tinctorius were observed as diploids (2n=2x=24). A symmetrical or slightly asymmetrical karyotype with seven pairs of metacentric and five pairs of submetacentric chromosomes was observed. The lengths of the somatic metaphase chromosomes ranged from 4.18 to $6.53{\mu}m$, with a total length of $60.71{\mu}m$. One locus of 45S rDNA was located on the pericentromeric regions of three pairs of chromosomes and the other pair was situated on the terminal regions of the short arms of a single pair of chromosomes. One locus of 5S rDNA was detected on the interstitial regions of the short arms of two pairs of chromosomes. Arabidopsis-type telomeric repeats were detected on the terminal regions of all pairs of chromosomes. Co-localization of loci between telomeric repeats and 45S rDNA was observed in a single pair of chromosomes. The results provide additional information for the existing physical mapping project of C. tinctorius and will also serve as a benchmark to a more intricate cytogenetic investigation of C. tinctorius and its related species.