DOI QR코드

DOI QR Code

Cytogenetic Mapping of Carthamus tinctorius L. with Tandemly Repeated DNA Sequences by Fluorescence in situ Hybridization

  • Mancia, Franklin Hinosa (Department of Environmental Horticulture, Sahmyook University) ;
  • Ju, Yoon Ha (Department of Convergence Science, Sahmyook University) ;
  • Lim, Ki-Byung (Department of Horticultural Science, Kyungpook National University) ;
  • Kim, Jung Sun (National Institute of Agricultural Science, Rural Development Administration) ;
  • Nam, Sang Yong (Department of Environmental Horticulture, Sahmyook University) ;
  • Hwang, Yoon-Jung (Department of Environmental Horticulture, Sahmyook University)
  • Received : 2017.08.02
  • Accepted : 2017.11.30
  • Published : 2017.12.31

Abstract

Dual-color fluorescence in situ hybridization karyotype analysis was created using repetitive sequences including two types of rDNA repeats (45S and 5S rDNAs) and Arabidopsis-type telomere sequence repeats. The somatic metaphase cells of Carthamus tinctorius were observed as diploids (2n=2x=24). A symmetrical or slightly asymmetrical karyotype with seven pairs of metacentric and five pairs of submetacentric chromosomes was observed. The lengths of the somatic metaphase chromosomes ranged from 4.18 to $6.53{\mu}m$, with a total length of $60.71{\mu}m$. One locus of 45S rDNA was located on the pericentromeric regions of three pairs of chromosomes and the other pair was situated on the terminal regions of the short arms of a single pair of chromosomes. One locus of 5S rDNA was detected on the interstitial regions of the short arms of two pairs of chromosomes. Arabidopsis-type telomeric repeats were detected on the terminal regions of all pairs of chromosomes. Co-localization of loci between telomeric repeats and 45S rDNA was observed in a single pair of chromosomes. The results provide additional information for the existing physical mapping project of C. tinctorius and will also serve as a benchmark to a more intricate cytogenetic investigation of C. tinctorius and its related species.

Keywords

References

  1. Agrawal, R., H. Tsujimoto, R. Tandon, S. Rama, R. Soom and N. Raina. 2013. Species-genomic relationships among the tribasic diploid and polyploid Carthamus taxa based on physical mapping of active and inactive 18S-5.8S-26S and 5S ribosomal RNA gene families, and the two tandemly repeated DNA sequences. Gene 521:136-144. https://doi.org/10.1016/j.gene.2013.03.036
  2. Akhter, S., S.K. Alam, M.A. Zaman and M.U. Patwary. 1992. Intraspecific variation in chromosome morphology of Crinum latifolium. Bangladesh J. Bot. 21:73-79.
  3. Ambreen, H., S. Kumar, M.T. Variath, G. Joshi, S. Bal, M. Agarwal, A. Kumar, A. Jagannath and S. Goel. 2015. Development of genomic microsatellite markers in Carthamus tinctorius L. (Safflower) using nest generation sequencing and assessment of their cross-species transferability and utility for diversity analysis. PLoS One 10:e0135443. https://doi.org/10.1371/journal.pone.0135443
  4. Anjalia, M. and A.K. Srivastavab. 2012. Karyological studies in twelve accessions of Carthamus tinctorius. Caryologia 65:1-6. https://doi.org/10.1080/00087114.2012.678072
  5. Belandres, H.R., N.E. Waminal, Y.J. Hwang, B.S. Park, S.S. Lee, J.H. Huh and H.H. Kim. 2015. FISH karyotype and GISH meiotic pairing analyses of a stable intergeneric hybrid xBrassicoraphanus line BB#5. Korean J. Hort. Sci. Technol. 33:83-92. https://doi.org/10.7235/hort.2015.14151
  6. Bustamante, F.O., L.C. Rocha, G.A. Torres, L.C. Davide, A. Mittelmann and V.H. Techio. 2014. Distribution of rDNA in diploid and polyploid Lolium multiflorum Lam. and fragile sites in 45S rDNA regions. Crop Sci. 54:1-9. https://doi.org/10.2135/cropsci2012.12.0710
  7. Cabral, J.S., L.P Felix and M. Guerra. 2006. Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet. Mol. Biol. 29:659-664. https://doi.org/10.1590/S1415-47572006000400015
  8. Chapman, M.A. and J.M. Burke. 2007. DNA sequence diversity and the origin of cultivated safflower (Carthamus tinctorius L.; Asteraceae). BMC Plant Biol. 7:60. https://doi.org/10.1186/1471-2229-7-60
  9. Collard, B.C.Y., M.Z.Z. Jahufer, J.B. Brouwer and E.C.K. Pang. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169-196. https://doi.org/10.1007/s10681-005-1681-5
  10. Cuyacot, A.R., S.Y. Won, S.K. Park, S.H. Sohn, J. Lee, J.S. Kim, H.H. Kim, K.B. Lim and Y.J. Hwang. 2016. The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci. Hortic. 196:438-444.
  11. Cronn, R.C., X. Zhao, A.H. Paterson and J.F. Wendel. 1996. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 42:685-705. https://doi.org/10.1007/BF02338802
  12. Dajue, L. and H.H. Mundel. 1996. Safflower. Carthamus tinctorius L. promoting the conversation and use of underutilized and neglected crops. 7. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy.
  13. Dvorackova, M., M. Fojtova and J. Jiri Fajkus. 2015. Chromatin dynamics of plant telomeres and ribosomal genes. The Plant J. 83:18-37. https://doi.org/10.1111/tpj.12822
  14. Fulnecek, J., K.Y. Lim, A.R. Leitch, A. Kovarik and R. Matyasek. 2002. Evolution and structure of 5S rDNA loci in allotetraploid Nicotiana tabacum and its putative parental species. Heredity 88:19-25. https://doi.org/10.1038/sj.hdy.6800001
  15. Galian, J.A., M. Rosato and J.A. Rossello. 2014. Incomplete sequence homogenization in 45S rDNA multigene families: intermixed IGS heterogeneity within the single NOR locus of the polyploid species Medicago arborea (Fabaceae). Ann. Bot. 114:243-251. https://doi.org/10.1093/aob/mcu115
  16. Garnatje, T., S. Garcia, R. Vilatersana and J. Valles. 2006. Genome size variation in the genus Carthamus (Asteraceae, Cardueae): systematic implications and additive changes during allopolyploidization. Ann. Bot. 97:461-467. https://doi.org/10.1093/aob/mcj050
  17. Harper, L.C. and W.Z. Cande. 2000. Mapping a new frontier; development of integrated cytogenetic maps in plants. Funct. Integr. Genomics 1:89-98. https://doi.org/10.1007/s101420000013
  18. Heslop-Harrison, J.S. 2000. Comparative genome organization in plants. Plant Cell 12:617-636. https://doi.org/10.1105/tpc.12.5.617
  19. Huang, M., H. Li, L. Zhang, F. Gao, P. Wang, Y. Hu, S. Yan, L. Zhao, Q. Zhang, J. Tan, X. Liu, S. He and L. Li. 2012. Plant 45S rDNA clusters are fragile sites and their instability is associated with epigenetic alterations. PLoS ONE 7:1-11.
  20. Ijdo, J.W., R.A. Wells, A. Baldini and S.T. Reeders. 1991. Improve telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl. Acids Res. 19:4780. https://doi.org/10.1093/nar/19.17.4780
  21. Kirov, I., M. Divashuk, K.V. Laere, A. Soloviev and L. Khrustaleva. 2014. An easy "SteamDrop" method for high quality plant chromosome preparation. Mol. Cytogenet. 7:21. https://doi.org/10.1186/1755-8166-7-21
  22. Kobayashi, T. and A.R. Ganley. 2005. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581-1584. https://doi.org/10.1126/science.1116102
  23. Kobayashi, T. 2008. A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. Bioessays 30:267-272. https://doi.org/10.1002/bies.20723
  24. Kubis, S., J.S Heslop-Harrison and T. Schmidt. 1997. A family of differentially amplified DNA sequences in the genus Beta reveals genetic variation in Beta vulgaris subspecies and cultivars. J. Mol. Evol. 44:310-320. https://doi.org/10.1007/PL00006148
  25. Kumar, H. 1991. Cytogenetics of safflower. In Tsuchiya, T. and P.K. Gupta (eds.), Chromosome Engineering in Plants: Developments in Plant Genetics and Breeding, Elsevier, Amsterdam, The Netherlands. pp. 251-277.
  26. Li, J., S. He, L. Zhang, Y. Hu, F. Yang, L. Ma, J. Huang and L. Li. 2012. Telomere and 45S rDNA sequences are structurally linked on the chromosomes in Chrysanthemum segetum L. Protoplasma 1:207-215.
  27. Lim, K.B., J. Wennekes, J.H. De jong, E. Jacobsen and J.M. van Tuyl. 2001. Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome 44:911-918. https://doi.org/10.1139/g01-066
  28. Mancia, F.M., S.H. Sohn, Y.K. Ahn, D.S. Kim, J.S. Kim, Y.S. Kwon, C.W. Kim, T.H. Lee and Y.J. Hwang. 2015. Distribution of various types of repetitive DNAs in Allium cepa L. based on dual color FISH. Hortic. Environ. Biotechnol. 56:793-799. https://doi.org/10.1007/s13580-015-1100-3
  29. Mehrotra, S. and V. Goyal. 2014. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12:164-171. https://doi.org/10.1016/j.gpb.2014.07.003
  30. Meszaros, M.J. and T.M. Nouzova. 2002. PlantSat: a specialized database for plant satellite repeats. Bioinformatics18:28-35. https://doi.org/10.1093/bioinformatics/18.1.28
  31. Murray, B.G. and A.G. Young. 2001. Widespread chromosome variation in the endangered grassland forb Rutidosis leptorrhynchoides F. Muell. (Asteraceae: Gnaphalieae). Ann. Bot. 87:83-90. https://doi.org/10.1006/anbo.2000.1307
  32. Noda, S. 1978. Chromosomes of diploid and triploid forms found in the natural populations of Tiger Lily in Tsushima. Bot. Mag. Tokyo 91:279-283. https://doi.org/10.1007/BF02488941
  33. Pich, U., J. Fuchs and I. Schubert. 1996. How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res. 4:207-213. https://doi.org/10.1007/BF02254961
  34. Porebski, S., G.L. Bailey and B.R. Baum. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15:8-15. https://doi.org/10.1007/BF02772108
  35. Raina, S.N., S. Sharma, T. Sasakuma, M. Kishii and S. Vaishnavi. 2005. Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization. J. Hered. 96:424-429. https://doi.org/10.1093/jhered/esi041
  36. Roa, F. and M. Guerra. 2012. Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol. Biol. 12:225. https://doi.org/10.1186/1471-2148-12-225
  37. Roa, F. and M. Guerra. 2015. Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 146:243-249. https://doi.org/10.1159/000440930
  38. Sheidai, M., M. Sotoode and Z. Nourmohammadi. 2009. Chromosome pairing and cytomixis in Safflower (Carthamus tinctorius L., Asteraceae) cultivars. Cytologia 74:43-53. https://doi.org/10.1508/cytologia.74.43
  39. Singh, V. and N. Nimbkar. 2007. Genetic resources, chromosome engineering, and crop improvement. In Singh, R.J. (ed). Safflower (Carthamus tinctorius L.), CRC Press, Boca Raton, FL (USA). pp. 167-194.
  40. Sousa, A., A.E. Barros e Silva, A. Cuadrado, Y. Loarce, M.V. Alves and M. Guerra. 2011. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the "chromosome field" hypothesis. Micron. 42:625-631. https://doi.org/10.1016/j.micron.2011.03.002
  41. Uozu, S., H. Ikehashi, N. Ohmido, H. Ohtsubo, E. Ohtsubo and K. Fukui. 1997. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol. Biol. 35:791. https://doi.org/10.1023/A:1005823124989
  42. Vaio, M., P. Speranza, J.F. Valls, M. Guerra and C. Mazella. 2005. Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria Group of Paspalum (Poaceae, Paniceae). Ann. Bot. 96:191-200. https://doi.org/10.1093/aob/mci168
  43. Varshney, R.K., T. Mahendar, R.K. Aggarwal and A. Borner. 2007. Genic molecular markers in plants: development and applications. In Genomics-assisted crop improvement. Springer Netherlands. pp. 13-29.
  44. Wang, C.J., L. Harper and Z. Cande. 2006. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. The Plant Cell 18:529-544. https://doi.org/10.1105/tpc.105.037838
  45. Wendel, J.F., A. Schnabel and T. Seelanan. 1995. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America (Washington, DC) 92:280-284. https://doi.org/10.1073/pnas.92.1.280
  46. Zakian, V. 1995. Telomeres: beginning to understand the end. Science 270:1601-1607. https://doi.org/10.1126/science.270.5242.1601
  47. Zhang, Z.T., S.Q. Yang, Z.A. Li, Y.X. Zhang, Y.Z. Wang, C.Y. Cheng, J. Li, J.F. Chen and Q.F. Lou. 2016. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 59:449-457. https://doi.org/10.1139/gen-2015-0207

Cited by

  1. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review vol.10, pp.11, 2017, https://doi.org/10.3390/plants10112541
  2. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae vol.10, pp.12, 2017, https://doi.org/10.3390/plants10122794